Aged metastable high-entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy

被引:101
作者
Zhang, Cheng [1 ]
Zhu, Chaoyi [2 ]
Cao, Penghui [1 ]
Wang, Xin [1 ]
Ye, Fan [1 ]
Kaufmann, Kevin [3 ]
Casalena, Lee [4 ]
MacDonald, Benjamin E. [1 ]
Pan, Xiaoqing [1 ]
Vecchio, Kenneth [2 ,3 ]
Lavernia, Enrique J.
机构
[1] Univ Calif Irvine, Dept Mat Sci & Engn, Irvine, CA 92717 USA
[2] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
[4] Thermo Fisher Sci, 5350 NE Dawson Creek Dr, Hillsboro, OR 97124 USA
关键词
High-entropy alloys; Deformation mechanism; Gnd density; Precipitation strengthening; Heterogeneous lamella structure; DEFORMATION STRUCTURES; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; BACK STRESS; MICROSTRUCTURE; PRECIPITATION; DESIGN; DISLOCATION; RECRYSTALLIZATION; LOCALIZATION;
D O I
10.1016/j.actamat.2020.08.043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-entropy alloys containing multi-principal-element systems significantly expand the potential alloy design space, and offer the possibility of overcoming the strength-ductility trade-off in metallurgical research. However, the gain in ultra-high strength through traditional grain refinement and precipitation-strengthening mechanisms inevitably leads to a drastic loss of ductility. Here, we report on the design and fabrication of heterogeneous-lamella structured, aged bulk high-entropy alloy, which attains giga-pascal tensile strength while retaining excellent ductility (UTS similar to 1.4 GPa, elongation similar to 30%; UTS similar to 1.7 GPa, elongation similar to 10%). Our work shows that the improved strength-ductility synergy arises due to various complementary strengthening mechanisms, including solid-solution, interfaces, precipitation and martensitic transformation, which influence the hardening and deformation processes at different strain levels. In particular, the hetero-deformation that is associated with the formation of microbands as well as the stress-induced martensite promotes additional hardening and hence high ductility. The strategy described here, that is leveraging the concept of heterogeneous microstructure design, provides a practical and novel method for fabricating high-performance structural materials. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:602 / 612
页数:11
相关论文
共 50 条
  • [41] Design for strength-ductility synergy of 316L stainless steel with heterogeneous lamella structure through medium cold rolling and annealing
    Li, Jiansheng
    Gao, Bo
    Huang, Zhaowen
    Zhou, Hao
    Mao, Qingzhong
    Li, Yusheng
    VACUUM, 2018, 157 : 128 - 135
  • [42] A Lightweight AlTiVNb High-Entropy Alloy Film with High Strength-Ductility Synergy and Corrosion Resistance
    Feng, Xiaobin
    Feng, Chuangshi
    Lu, Yang
    MATERIALS, 2022, 15 (23)
  • [43] Heterogeneous banded precipitation of (CoCrNi)93Mo7 medium entropy alloys towards strength-ductility synergy utilizing compositional inhomogeneity
    Chang, Ruobin
    Fang, Wei
    Yu, Haoyang
    Bai, Xi
    Zhang, Xin
    Liu, Baoxi
    Yin, Fuxing
    SCRIPTA MATERIALIA, 2019, 172 : 144 - 148
  • [44] A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy
    Wu, Pengfei
    Gan, Kefu
    Yan, Dingshun
    Fu, Zhenghong
    Li, Zhiming
    CORROSION SCIENCE, 2021, 183
  • [45] Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off
    Li, Zhiming
    Pradeep, Konda Gokuldoss
    Deng, Yun
    Raabe, Dierk
    Tasan, Cemal Cem
    NATURE, 2016, 534 (7606) : 227 - +
  • [46] Achieving ultrahigh strength and ductility in high-entropy alloys via dual precipitation
    Guo, J. M.
    Zhou, B. C.
    Qiu, S.
    Kong, H. J.
    Niu, M. C.
    Luan, J. H.
    Zhang, T. L.
    Wu, H.
    Jiao, Z. B.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 166 : 67 - 77
  • [47] Achieving excellent strength-ductility synergy via cold rolling-annealing in Al-containing refractory high-entropy alloys
    Ma, Yaxi
    Sun, Lixin
    Zhang, Yang
    Zhang, Zhongwu
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2023, 114
  • [48] High strength-ductility synergy in heterogeneous multilayer medium entropy alloy/maraging materials by step ageing
    Wang, Jiao
    Yu, Wenxing
    Liu, Baoxi
    Ding, Jiale
    Yin, Fuxing
    Hu, Ning
    MATERIALS CHARACTERIZATION, 2025, 221
  • [49] Exceptional strength-ductility synergy in a casting multi-principal element alloy with a hierarchically heterogeneous structure
    Gao, Qingwei
    Kou, Zongde
    Zhou, Changshan
    Liu, Xiaoming
    Zhang, Jiyao
    Gong, Jianhong
    Song, Kaikai
    Hu, Lina
    Liu, Zengqian
    Zhang, Zhefeng
    Eckert, Juergen
    Ritchie, Robert O.
    MATERIALS TODAY, 2024, 81 : 70 - 83
  • [50] Ultrafine lamellar microstructures for enhancing strength-ductility synergy in high-entropy alloys via severe cold rolling process
    Naseri, Majid
    Moghaddam, Ahmad Ostovari
    Shaburova, Nataliya
    Gholami, Davood
    Pellenen, Anatoliy
    Trofimov, Evgeny
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 965