THE PHASE TRANSITION FOR DYADIC TILINGS

被引:0
作者
Angel, Omer [1 ]
Holroyd, Alexander E. [2 ]
Kozma, Gady [3 ]
Wastlund, Johan [4 ]
Winkler, Peter [5 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Microsoft Res, Redmond, WA 98052 USA
[3] Weizmann Inst Sci, IL-76100 Rehovot, Israel
[4] Chalmers, Dept Math Sci, S-41296 Gothenburg, Sweden
[5] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
基金
美国国家科学基金会; 以色列科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Dyadic rectangle; tiling; phase transition; percolation; generating function; ZERO-ONE LAW; UNIT SQUARE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A dyadic tile of order n is any rectangle obtained from the unit square by n successive bisections by horizontal or vertical cuts. Let each dyadic tile of order n be available with probability p, independent of the others. We prove that for p sufficiently close to 1, there exists a set of pairwise disjoint available tiles whose union is the unit square, with probability tending to 1 as n -> infinity, as conjectured by Joel Spencer in 1999. In particular, we prove that if p = 7/8, such a tiling exists with probability at least 1 - (3/4)(n). The proof involves a surprisingly delicate counting argument for sets of unavailable tiles that prevent tiling.
引用
收藏
页码:1029 / 1046
页数:18
相关论文
共 9 条
[1]  
[Anonymous], 1960, Mathematical Proceedings of the Cambridge Philosophical Society, DOI DOI 10.1017/S0305004100034241
[2]  
Coffman EG, 2001, PROBAB THEORY REL, V120, P585
[3]   Every monotone graph property has a sharp threshold [J].
Friedgut, E ;
Kalai, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (10) :2993-3002
[4]   Random dyadic tilings of the unit square [J].
Janson, S ;
Randall, D ;
Spencer, J .
RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (3-4) :225-251
[5]  
Janson S., 2001, REMARKS RANDOM DYADI
[6]   Counting dyadic equipartitions of the unit square [J].
Lagarias, JC ;
Spencer, JH ;
Vinson, JP .
DISCRETE MATHEMATICS, 2002, 257 (2-3) :481-499
[7]   AN APPROXIMATE ZERO-ONE LAW [J].
RUSSO, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 61 (01) :129-139
[8]   ON RUSSOS APPROXIMATE ZERO-ONE LAW [J].
TALAGRAND, M .
ANNALS OF PROBABILITY, 1994, 22 (03) :1576-1587
[9]   A note on the norms of transition operators on lamplighter graphs and groups [J].
Woess, W .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2005, 15 (5-6) :1261-1272