Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives

被引:297
作者
Ghosh, Srabanti [1 ]
Basu, Rajendra N. [1 ]
机构
[1] Cent Glass & Ceram Res Inst, CSIR, Fuel Cell & Battery Div, 196 Raja SC Mullick Rd, Kolkata 700032, India
关键词
EFFICIENT BIFUNCTIONAL ELECTROCATALYST; LAYERED-DOUBLE-HYDROXIDE; OXYGEN REDUCTION REACTION; N-DOPED CARBON; ELECTROCHEMICAL WATER OXIDATION; NONPRECIOUS METAL CATALYST; PEROVSKITE OXIDE CATALYSTS; REDUCED GRAPHENE OXIDE; BI-FUNCTIONAL CATALYST; NICKEL-IRON NITRIDE;
D O I
10.1039/c8nr01032c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrocatalytic oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) have attracted widespread attention because of their important role in the application of various energy storage and conversion devices, such as fuel cells, metal-air batteries and water splitting devices. However, the sluggish kinetics of the HER/OER/ORR and their dependency on expensive noble metal catalysts (e.g., Pt) obstruct their large-scale application. Hence, the development of efficient and robust bifunctional or trifunctional electrocatalysts in nanodimension for both oxygen reduction/evolution and hydrogen evolution reactions is highly desired and challenging for their commercialization in renewable energy technologies. This review describes some recent developments in the discovery of bifunctional or trifunctional nanostructured catalysts with improved performances for application in rechargeable metal-air batteries and fuel cells. The role of the electronic structure and surface redox chemistry of nanocatalysts in the improvement of their performance for the ORR/OER/HER under an alkaline medium is highlighted and the associated reaction mechanisms developed in the recent literature are also summarized.
引用
收藏
页码:11241 / 11280
页数:40
相关论文
共 306 条
[1]   Effects of strain, d-band filling, and oxidation state on the surface electronic structure and reactivity of 3d perovskite surfaces [J].
Akhade, Sneha A. ;
Kitchin, John R. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (08)
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Splitting Water with Cobalt [J].
Artero, Vincent ;
Chavarot-Kerlidou, Murielle ;
Fontecave, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (32) :7238-7266
[4]   Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation [J].
Bao, Jian ;
Zhang, Xiaodong ;
Fan, Bo ;
Zhang, Jiajia ;
Zhou, Min ;
Yang, Wenlong ;
Hu, Xin ;
Wang, Hui ;
Pan, Bicai ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (25) :7399-7404
[5]   Oxygen Reduction Properties of Bifunctional α-Manganese Oxide Electrocatalysts in Aqueous and Organic Electrolytes [J].
Benbow, E. M. ;
Kelly, S. P. ;
Zhao, L. ;
Reutenauer, J. W. ;
Suib, S. L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (44) :22009-22017
[6]  
Benhangi P. H., 2015, J ELECTROCHEM SOC, V162, pF1356
[7]   Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction [J].
Bing, Yonghong ;
Liu, Hansan ;
Zhang, Lei ;
Ghosh, Dave ;
Zhang, Jiujun .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (06) :2184-2202
[8]   Non-Aqueous and Hybrid Li-O2 Batteries [J].
Black, Robert ;
Adams, Brian ;
Nazar, L. F. .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :801-815
[9]   MECHANISM OF OXYGEN EVOLUTION ON PEROVSKITES [J].
BOCKRIS, JO ;
OTAGAWA, T .
JOURNAL OF PHYSICAL CHEMISTRY, 1983, 87 (15) :2960-2971
[10]   La0.6Ca0.4CoO3, La0.1Ca0.9MnO3 and LaNiO3 as bifunctional oxygen electrodes [J].
Bursell, M ;
Pirjamali, M ;
Kiros, Y .
ELECTROCHIMICA ACTA, 2002, 47 (10) :1651-1660