Weak solutions for the exterior Stokes problem in weighted Sobolev spaces

被引:0
作者
Alliot, F [1 ]
Amrouche, C [1 ]
机构
[1] ENPC, CERMICS, F-77455 Marne la Vallee 2, France
关键词
D O I
10.1002/(SICI)1099-1476(200004)23:6<575::AID-MMA128>3.0.CO;2-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend here some existence and uniqueness results for the exterior Stokes problem in weighted Sobolev spaces. We also study the regularity of the solutions (u, pi) and prove optimal a priori estimates for the solutions with del(2)u, del pi epsilon L-p. The influence of some compatibility conditions on the behaviour at infinity of the solution is finally studied and leads to new asymptotic expansions. Copyright (C) 2000 John Wiley &, Sons, Ltd.
引用
收藏
页码:575 / 600
页数:26
相关论文
共 50 条
[41]   On solutions of almost hypoelliptic equations in weighted Sobolev spaces [J].
H. G. Ghazaryan ;
V. N. Margaryan .
Journal of Contemporary Mathematical Analysis, 2010, 45 :239-249
[42]   Self-similar solutions of the Navier-Stokes equations on weak weighted Lorentz spaces [J].
Hong Liang Li ;
Jie Cheng Chen .
Acta Mathematica Sinica, English Series, 2015, 31 :44-60
[43]   Existence and Uniqueness of Weak Solutions to the Two-Dimensional Stationary Navier-Stokes Exterior Problem [J].
Yamazaki, Masao .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (04) :2019-2051
[44]   Self-similar Solutions of the Navier-Stokes Equations on Weak Weighted Lorentz Spaces [J].
Li, Hong Liang ;
Chen, Jie Cheng .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (01) :44-60
[45]   Flow Representation of the Navier-Stokes Equations in Weighted Sobolev Spaces [J].
Sirisubtawee, Sekson ;
Manitcharoen, Naowarat ;
Saksurakan, Chukiat .
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2025, 23
[46]   Solutions of the Navier-Stokes initial value problem in weighted Lq-spaces [J].
Fröhlich, A .
MATHEMATISCHE NACHRICHTEN, 2004, 269 :150-166
[47]   The existence and uniqueness result of entropy solutions for a p(•)-Laplace operator problem in weighted Sobolev spaces [J].
Zuo, Jiabin ;
Sabri, Abdelali .
QUAESTIONES MATHEMATICAE, 2023, 46 (08) :1669-1694
[48]   Weak solutions for elliptic problems in weighted anisotropic Sobolev space [J].
Soltani, Tahere ;
Razani, Abdolrahman .
FILOMAT, 2023, 37 (28) :9729-9740
[49]   Weighted Sobolev spaces [J].
Zhikov, VV .
SBORNIK MATHEMATICS, 1998, 189 (7-8) :1139-1170
[50]   On weighted Sobolev spaces [J].
Chua, SK .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (03) :527-541