Gold Cone Metasurface MIC Sensor with Monolayer of Graphene and Multilayer of Graphite

被引:16
作者
Ahmad, H. [1 ]
Ghasemi, M. [1 ]
Amiri, I. S. [1 ]
Ariannejad, M. M. [1 ]
Norizan, Siti Fatimah [2 ]
Latif, Amirah Abdul [3 ]
Soltanian, M. R. K. [1 ]
机构
[1] Univ Malaya, Photon Res Ctr, Kuala Lumpur 50603, Malaysia
[2] Int Islamic Univ Malaysia, Kulliyyah Sci, Jalan Sultan Ahmad Shah, Kuantan 25200, Pahang, Malaysia
[3] Univ Putra Malaysia, Dept Phys, Fac Sci, Serdang 43400, Selangor, Malaysia
关键词
Metamaterial MIC sensor; Plasmonic; Graphene; Graphite; Nanogold cone; ABSORBERS; ABSORPTION; EFFICIENCY; ANGLE;
D O I
10.1007/s11468-016-0290-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This report makes a comparison between the spectrum features of plasmonic metamaterial metal-insulator-conductor (MIC) sensor with a monolayer of graphene and another MIC sensor with a multilayer of graphite as the back reflector. In both structures, the silicon substrate as an insulator layer was sandwiched between subwavelength periodic nanogold cones as the first layer and graphene and graphite as the third layer, respectively. Nanolayer of chromium nanorods was also considered in the structure of MIC sensors as an interface layer between silicon and nanogold cone metasurface. The performance of the sensor was evaluated under different incident polarized light angles and different thickness of the metasurface when the metasurface infiltrated with seawater and air. The transmission spectrum of monolayer graphene-based MIC sensor, respecting to s-polarized waves, reveals prominent feature to detect the air rather than seawater in invisible regime. Meanwhile, the reflection spectrum of graphite-based MIC sensor provides `similar to 0 % reflection under resonance condition regarding s- and p-polarized waves for detecting air in visible spectrum.
引用
收藏
页码:497 / 508
页数:12
相关论文
共 28 条
[1]   Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces [J].
Argyropoulos, Christos ;
Le, Khai Q. ;
Mattiucci, Nadia ;
D'Aguanno, Giuseppe ;
Alu, Andrea .
PHYSICAL REVIEW B, 2013, 87 (20)
[2]   The promise of plasmonics [J].
Atwater, Harry A. .
SCIENTIFIC AMERICAN, 2007, 296 (04) :56-63
[3]   Surface plasmon-polariton amplifiers and lasers [J].
Berini, Pierre ;
De Leon, Israel .
NATURE PHOTONICS, 2012, 6 (01) :16-24
[4]   Angle-independent plasmonic infrared band-stop reflective filter based on the Ag/SiO2/Ag T-shaped array [J].
Cheng, Cheng-Wen ;
Abbas, Mohammed Nadhim ;
Chang, Zi-Chang ;
Shih, M. H. ;
Wang, Chih-Ming ;
Wu, M. C. ;
Chang, Yia-Chung .
OPTICS LETTERS, 2011, 36 (08) :1440-1442
[5]   Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells [J].
Dang, Xiangnan ;
Qi, Jifa ;
Klug, Matthew T. ;
Chen, Po-Yen ;
Yun, Dong Soo ;
Fang, Nicholas X. ;
Hammond, Paula T. ;
Belcher, Angela M. .
NANO LETTERS, 2013, 13 (02) :637-642
[6]   Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction [J].
Grady, Nathaniel K. ;
Heyes, Jane E. ;
Chowdhury, Dibakar Roy ;
Zeng, Yong ;
Reiten, Matthew T. ;
Azad, Abul K. ;
Taylor, Antoinette J. ;
Dalvit, Diego A. R. ;
Chen, Hou-Tong .
SCIENCE, 2013, 340 (6138) :1304-1307
[7]   High performance optical absorber based on a plasmonic metamaterial [J].
Hao, Jiaming ;
Wang, Jing ;
Liu, Xianliang ;
Padilla, Willie J. ;
Zhou, Lei ;
Qiu, Min .
APPLIED PHYSICS LETTERS, 2010, 96 (25)
[8]   Review of Plasmonic Nanocomposite Metamaterial Absorber [J].
Hedayati, Mehdi Keshavarz ;
Faupel, Franz ;
Elbahri, Mady .
MATERIALS, 2014, 7 (02) :1221-1248
[9]   Wide-angle and polarization-independent metamaterial absorber based on snowflake-shaped configuration [J].
Huang, Y. -J. ;
Wen, G. -J. ;
Li, J. ;
Zhu, W. -R. ;
Wang, P. ;
Sun, Y. -H. .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2013, 27 (05) :552-559
[10]  
Koenig SP, 2011, NAT NANOTECHNOL, V6, P543, DOI [10.1038/nnano.2011.123, 10.1038/NNANO.2011.123]