Fast high-order method for multi-dimensional space-fractional reaction-diffusion equations with general boundary conditions

被引:13
作者
Almushaira, M. [1 ,2 ]
Bhatt, H. [3 ]
Al-rassas, A. M. [4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Sanaa Univ, Fac Sci, Dept Math, Sanaa, Yemen
[3] Utah Valley Univ, Dept Math, Orem, UT 84058 USA
[4] China Univ Petr East China, Sch Petr Engn, Qingdao 266580, Peoples R China
关键词
Space-fractional reaction-diffusion; Discrete fast transform; Matrix transfer technique; Exponential time differencing; INTEGRATION FACTOR METHODS; NUMERICAL-METHODS; SPECTRAL METHOD; SCHEME; DISCRETIZATION; LAPLACIAN; EFFICIENT; OPERATOR;
D O I
10.1016/j.matcom.2020.11.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
To achieve the efficient and accurate long-time integration, we propose a fast and stable high-order numerical method for solving fractional-in-space reaction-diffusion equations. The proposed method is explicit in nature and utilizes the fourth-order compact finite difference scheme and matrix transfer technique (MTT) in space with FFT-based implementation. Time integration is done through the modified fourth-order exponential time differencing Runge-Kutta scheme. The linear stability analysis and various numerical experiments including two-dimensional (2D) Fitzhugh-Nagumo, Allen-Cahn, Gierer-Meinhardt, Gray-Scott and three-dimensional (3D) Schnakenberg models are presented to demonstrate the accuracy, efficiency, and stability of the proposed method. (C) 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:235 / 258
页数:24
相关论文
共 48 条
[1]   RATIONAL APPROXIMATION TO THE FRACTIONAL LAPLACIAN OPERATOR IN REACTION-DIFFUSION PROBLEMS [J].
Aceto, Lidia ;
Novati, Paolo .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (01) :A214-A228
[2]   Fourth-order time stepping methods with matrix transfer technique for space-fractional reaction-diffusion equations [J].
Alzahrani, S. S. ;
Khaliq, A. Q. M. ;
Biala, T. A. ;
Furati, K. M. .
APPLIED NUMERICAL MATHEMATICS, 2019, 146 :123-144
[3]   A new class of time discretization schemes for the solution of nonlinear PDEs [J].
Beylkin, G ;
Keiser, JM ;
Vozovoi, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (02) :362-387
[4]   A compact fourth-order L-stable scheme for reaction-diffusion systems with nonsmooth data [J].
Bhatt, H. P. ;
Khaliq, A. Q. M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 299 :176-193
[5]  
Bhatt H.P., 2019, NUMER ALGORITHMS, P1
[6]   Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations [J].
Bu, Weiping ;
Tang, Yifa ;
Yang, Jiye .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 276 :26-38
[7]   Fourier spectral methods for fractional-in-space reaction-diffusion equations [J].
Bueno-Orovio, Alfonso ;
Kay, David ;
Burrage, Kevin .
BIT NUMERICAL MATHEMATICS, 2014, 54 (04) :937-954
[8]   AN EFFICIENT IMPLICIT FEM SCHEME FOR FRACTIONAL-IN-SPACE REACTION-DIFFUSION EQUATIONS [J].
Burrage, Kevin ;
Hale, Nicholas ;
Kay, David .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04) :A2145-A2172
[9]  
Constantin P., 2016, INT MATH RES NOTICES, V6, P1653
[10]   Exponential time differencing for stiff systems [J].
Cox, SM ;
Matthews, PC .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 176 (02) :430-455