Anisotropic magnetoconductance in polymer thin films

被引:9
作者
Cox, M. [1 ]
Zhu, F.
Veerhoek, J. M.
Koopmans, B.
机构
[1] Eindhoven Univ Technol, Ctr NanoMat, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
来源
PHYSICAL REVIEW B | 2014年 / 89卷 / 19期
关键词
ROOM-TEMPERATURE; ORGANIC MAGNETORESISTANCE; MAGNETIC-FIELDS; EXCITON-FISSION; FLUORESCENCE; CRYSTALS; DEVICES; SEMICONDUCTORS;
D O I
10.1103/PhysRevB.89.195204
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dependence of the magnetic field sensitive current on the orientation of the magnetic field has been investigated in organic semiconductor devices where the active layer consists of the poly(p-phenylene vinylene) derivative "Super Yellow." Previous work on Alq(3) suggested that the anisotropy was caused either by anisotropic spin-spin interactions or by anisotropic hyperfine fields, but no discrimination could be made. In the present work, the anisotropy at the hyperfine field scale is best explained by dipolar coupling between the spin of polarons. In addition, a high field anisotropy is found with an opposite sign, different angle, and voltage dependence. Spin density matrix calculations were performed of polaron pair interactions for the low field effect, and a Delta g-mechanism, triplet-polaron, or triplet-triplet interaction for the high field effect. The simulations confirm that the low field anisotropy can indeed be explained by dipolar coupling. However, the proposed models can not entirely account for the high field anisotropy. These results show that, although contemporary models can account for (anisotropic) magnetic field effects in organic semiconductors at low field scales, more experimental and theoretical research of high field effects is highly desirable.
引用
收藏
页数:7
相关论文
共 39 条
[1]   Electron-hole pair mechanism for the magnetic field effect in organic light emitting diodes based on poly(paraphenylene vinylene) [J].
Bagnich, S. A. ;
Niedermeier, U. ;
Melzer, C. ;
Sarfert, W. ;
von Seggern, H. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (11)
[2]   Robust absolute magnetometry with organic thin-film devices [J].
Baker, W. J. ;
Ambal, K. ;
Waters, D. P. ;
Baarda, R. ;
Morishita, H. ;
van Schooten, K. ;
McCamey, D. R. ;
Lupton, J. M. ;
Boehme, C. .
NATURE COMMUNICATIONS, 2012, 3
[3]   Inversion of magnetoresistance in organic semiconductors [J].
Bergeson, J. D. ;
Prigodin, V. N. ;
Lincoln, D. M. ;
Epstein, A. J. .
PHYSICAL REVIEW LETTERS, 2008, 100 (06)
[4]   Separating positive and negative magnetoresistance in organic semiconductor devices [J].
Bloom, F. L. ;
Wagemans, W. ;
Kemerink, M. ;
Koopmans, B. .
PHYSICAL REVIEW LETTERS, 2007, 99 (25)
[5]   Bipolaron mechanism for organic magnetoresistance [J].
Bobbert, P. A. ;
Nguyen, T. D. ;
van Oost, F. W. A. ;
Koopmans, B. ;
Wohlgenannt, M. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[6]   External Quantum Efficiency Above 100% in a Singlet-Exciton-Fission-Based Organic Photovoltaic Cell [J].
Congreve, Daniel N. ;
Lee, Jiye ;
Thompson, Nicholas J. ;
Hontz, Eric ;
Yost, Shane R. ;
Reusswig, Philip D. ;
Bahlke, Matthias E. ;
Reineke, Sebastian ;
Van Voorhis, Troy ;
Baldo, Marc A. .
SCIENCE, 2013, 340 (6130) :334-337
[7]   Traps and trions as origin of magnetoresistance in organic semiconductors [J].
Cox, M. ;
Janssen, P. ;
Zhu, F. ;
Koopmans, B. .
PHYSICAL REVIEW B, 2013, 88 (03)
[8]   Magnetoresistance and efficiency measurements of Alq3-based OLEDs [J].
Desai, Pratik ;
Shakya, P. ;
Kreouzis, T. ;
Gillin, W. P. ;
Morley, N. A. ;
Gibbs, M. R. J. .
PHYSICAL REVIEW B, 2007, 75 (09)
[9]   OBSERVATION OF ANTICROSSINGS IN OPTICAL RESONANCE FLUORESCENCE [J].
ECK, TG ;
FOLDY, LL ;
WIEDER, H .
PHYSICAL REVIEW LETTERS, 1963, 10 (06) :239-&
[10]   Large magnetoresistance at room temperature in semiconducting polymer sandwich devices -: art. no. 185 [J].
Francis, TL ;
Mermer, Ö ;
Veeraraghavan, G ;
Wohlgenannt, M .
NEW JOURNAL OF PHYSICS, 2004, 6 :1-8