Consistency and prior falsification of training data in seismic deep learning: Application to offshore deltaic reservoir characterization

被引:6
作者
Pradhan, Anshuman [1 ]
Mukerji, Tapan [1 ,2 ,3 ]
机构
[1] Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Geol Sci, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Geophys, Stanford, CA 94305 USA
关键词
VELOCITY DISPERSION; WAVELET ESTIMATION; ROCK-PHYSICS; INVERSION; UNCERTAINTY; NETWORKS;
D O I
10.1190/geo2021-0568.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep learning (DL) applications of seismic reservoir characterization often require the generation of synthetic data to augment available sparse labeled data. An approach for generating synthetic training data consists of specifying probability distributions modeling prior geologic uncertainty on reservoir properties and forward modeling the seismic data. A prior falsification approach is critical to establish the consistency of the synthetic training data distribution with real seismic data. With the help of a real case study of facies classification with convolutional neural networks (CNNs) from an offshore deltaic reservoir, we have highlighted several practical nuances associated with training DL models on synthetic seismic data. We highlight the issue of overfitting of CNNs to the synthetic training data distribution and prothe efficacy of our proposed strategies by training the CNN on synthetic data and making robust predictions with real 3D partial stack seismic data.
引用
收藏
页码:N45 / N61
页数:17
相关论文
共 64 条
  • [11] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [12] Talarico ECES, 2020, GEOPHYSICS, V85, pM43, DOI [10.1190/GEO2019-0392.1, 10.1190/geo2019-0392.1]
  • [13] Three-dimensional seismic geomorphology of a deep-water slope-channel system: The Sequoia field, offshore west Nile Delta, Egypt
    Cross, Nigel E.
    Cunningham, Alan
    Cook, Robert J.
    Taha, Amal
    Esmaie, Eslam
    El Swidan, Nasar
    [J]. AAPG BULLETIN, 2009, 93 (08) : 1063 - 1086
  • [14] Petrophysical properties prediction from prestack seismic data using convolutional neural networks
    Das, Vishal
    Mukerji, Tapan
    [J]. GEOPHYSICS, 2020, 85 (05) : N41 - N55
  • [15] Convolutional neural network for seismic impedance inversion
    Das, Vishal
    Pollack, Ahinoam
    Wollner, Uri
    Mukerji, Tapan
    [J]. GEOPHYSICS, 2019, 84 (06) : R869 - R880
  • [16] Daubechies I, 1992, 10 LECT WAVELETS
  • [17] Multimodal Markov chain Monte Carlo method for nonlinear petrophysical seismic inversion
    de Figueiredo, Leandro Passos
    Grana, Dario
    Roisenberg, Mauro
    Rodrigues, Bruno B.
    [J]. GEOPHYSICS, 2019, 84 (05) : M1 - M13
  • [18] Doyen P., 2007, SEISMIC RESERVOIR CH
  • [19] Duda R. O., 1973, Pattern Classification
  • [20] Dumoulin V., 2016, CoRR