A density property for fractional weighted Sobolev spaces

被引:31
作者
Dipierro, Serena [1 ,2 ]
Valdinoci, Enrico [3 ,4 ]
机构
[1] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
[3] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[4] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
基金
英国工程与自然科学研究理事会;
关键词
Weighted fractional Sobolev spaces; density properties;
D O I
10.4171/RLM/712
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show a density property for fractional weighted Sobolev spaces. That is, we prove that any function in a fractional weighted Sobolev space can be approximated by a smooth function with compact support. The additional difficulty in this nonlocal setting is caused by the fact that the weights are not necessarily translation invariant.
引用
收藏
页码:397 / 422
页数:26
相关论文
共 15 条
[1]  
Abdellaoui B., 2014, CAFFARELLI KOHN NIRE
[2]  
[Anonymous], 2010, MATH SURVEYS MONOGRA
[3]  
Chiado Piat V., 1994, J CONVEX ANAL, V1, P135
[4]  
Demengel F., 2007, FUNCTION SPACES USAG
[5]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[6]  
Dipierro S., 2015, QUALITATIVE PROPERTI
[7]  
Dipierro S., 2014, DIPIERRO M MEDINA 1
[8]  
Duoandikoetxea J., 2001, Fourier analysis
[9]   DENSITY PROPERTIES FOR FRACTIONAL SOBOLEV SPACES [J].
Fiscella, Alessio ;
Servadei, Raffaella ;
Valdinoci, Enrico .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) :235-253
[10]  
Folland G. B., 1984, Real Analysis: Modern Techniques and Their Applications