The Schrodinger equation with spatial white noise potential

被引:21
作者
Debussche, Arnaud [1 ]
Weber, Hendrik [2 ]
机构
[1] Univ Rennes, CNRS, IRMAR UMR 6625, F-35000 Rennes, France
[2] Univ Warwick, Coventry, W Midlands, England
基金
美国国家科学基金会;
关键词
nonlinear Schrodinger equation; spatial white noise; renormalization;
D O I
10.1214/18-EJP143
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the linear and nonlinear Schrodinger equation with a spatial white noise as a potential over the two dimensional torus. We prove existence and uniqueness of solutions to an initial value problem for suitable initial data. Our construction is based on a change of unknown originally used in [13] and conserved quantities.
引用
收藏
页数:16
相关论文
共 18 条
[1]  
Allez R., ARXIV151102718V2
[2]  
Bahouri H., 2011, FOURIER ANAL NONLINE, V343
[3]   Invariant measures for the 2D-defocusing nonlinear Schrodinger equation [J].
Bourgain, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 176 (02) :421-445
[4]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[5]  
Brezis H., NONLINEAR ANAL THEOR, V4, P677
[6]  
Cazenave T., 1998, OXFORD LECT SERIES M
[7]  
Cazenave T., 2003, Courant Lecture Notes in Mathematics
[8]   Gain of regularity for semilinear Schrodinger equations [J].
Chihara, H .
MATHEMATISCHE ANNALEN, 1999, 315 (04) :529-567
[9]  
Conti C., 2012, PHYS REV A, V86
[10]   TALBOT EFFECT FOR THE CUBIC NON-LINEAR SCHRODINGER EQUATION ON THE TORUS [J].
Erdogan, M. B. ;
Tzirakis, N. .
MATHEMATICAL RESEARCH LETTERS, 2013, 20 (06) :1081-1090