Random Matrices and Quantum Spin Chains

被引:0
|
作者
Keating, J. P. [1 ]
Linden, N. [1 ]
Wells, H. J. [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
关键词
quantum spin chains; density of states; spectral statistics; random matrix theory; MANY-PARTICLE SYSTEMS; CENTRAL-LIMIT-THEOREM; LEVEL; ENTANGLEMENT; DISTRIBUTIONS; HAMILTONIANS; MODELS;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Random matrix ensembles are introduced that respect the local tensor structure of Hamiltonians describing a chain of n distinguishable spin-half particles with nearest-neighbour interactions. We prove a central limit theorem for the density of states when n -> infinity, giving explicit bounds on the rate of approach to the limit. Universality within a class of probability measures and the extension to more general interaction geometries are established. The level spacing distributions of the Gaussian Orthogonal, Unitary and Symplectic Ensembles are observed numerically for the energy levels in these ensembles.
引用
收藏
页码:537 / 555
页数:19
相关论文
共 50 条
  • [31] Aspects of the mathematical theory of disordered quantum spin chains
    Stolz, Gunter
    ANALYTIC TRENDS IN MATHEMATICAL PHYSICS, 2020, 741 : 163 - 197
  • [32] Quantum coherence of strongly correlated defects in spin chains
    Bertaina, Sylvain
    Dutoit, Charles-Emmanuel
    Van Tol, Johan
    Dressel, Martin
    Barbara, Bernard
    Stepanov, Anatoli
    20TH INTERNATIONAL CONFERENCE ON MAGNETISM, ICM 2015, 2015, 75 : 23 - 28
  • [33] Magnetocaloric effect in quantum spin-s chains
    Honecker, A.
    Wessel, S.
    CONDENSED MATTER PHYSICS, 2009, 12 (03) : 399 - 410
  • [34] Supersymmetric quantum spin chains and classical integrable systems
    Tsuboi, Zengo
    Zabrodin, Anton
    Zotov, Andrei
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05):
  • [35] Eigenstate thermalization hypothesis and integrability in quantum spin chains
    Alba, Vincenzo
    PHYSICAL REVIEW B, 2015, 91 (15)
  • [36] Drude Weight in Non Solvable Quantum Spin Chains
    G. Benfatto
    V. Mastropietro
    Journal of Statistical Physics, 2011, 143 : 251 - 260
  • [37] Drude Weight in Non Solvable Quantum Spin Chains
    Benfatto, G.
    Mastropietro, V.
    JOURNAL OF STATISTICAL PHYSICS, 2011, 143 (02) : 251 - 260
  • [39] Nonlinear sigma model approach to quantum spin chains
    Rao, Sumathi
    INDIAN JOURNAL OF PHYSICS, 2006, 80 (06) : 599 - 607
  • [40] Anyonic quantum spin chains: Spin-1 generalizations and topological stability
    Gils, C.
    Ardonne, E.
    Trebst, S.
    Huse, D. A.
    Ludwig, A. W. W.
    Troyer, M.
    Wang, Z.
    PHYSICAL REVIEW B, 2013, 87 (23)