Two-Photon Polymerization of Nanocomposites for the Fabrication of Transparent Fused Silica Glass Microstructures

被引:201
作者
Kotz, Frederik [1 ,2 ,3 ]
Quick, Alexander S. [4 ]
Risch, Patrick [1 ,2 ]
Martin, Tanja [4 ]
Hoose, Tobias [4 ]
Thiel, Michael [4 ]
Helmer, Dorothea [1 ,2 ,3 ,5 ]
Rapp, Bastian E. [1 ,2 ,3 ,5 ]
机构
[1] Glassomer GmbH, Georges Kohler Allee 103, D-79110 Freiburg, Germany
[2] Univ Freiburg, Dept Microsyst Engn IMTEK, Lab Proc Technol, NeptunLab, D-79110 Freiburg, Germany
[3] Univ Freiburg, Freiburg Mat Res Ctr FMF, D-79104 Freiburg, Germany
[4] Nanoscribe GmbH, Hermann von Helmholtz Pl 6, D-76344 Eggenstein Leopoldshafen, Germany
[5] Univ Freiburg, FIT Freiburg Ctr Interact Mat & Bioinspired Techn, D-79110 Freiburg, Germany
关键词
3D printing; direct laser writing; fused silica glass; nanocomposites; two-photon polymerization;
D O I
10.1002/adma.202006341
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fused silica glass is the material of choice for many high-performance components in optics due to its high optical transparency combined with its high thermal, chemical, and mechanical stability. Especially, the generation of fused silica microstructures is of high interest for microoptical and biomedical applications. Direct laser writing (DLW) is a suitable technique for generating such devices, as it enables nearly arbitrary structuring down to the sub-micrometer level. In this work, true 3D structuring of transparent fused silica glass using DLW with tens of micrometer resolution and a surface roughness of R-a approximate to 6 nm is demonstrated. The process uses a two-photon curable silica nanocomposite resin that can be structured by DLW, with the printout being convertible to transparent fused silica glass via thermal debinding and sintering. This technology will enable a plethora of applications from next-generation optics and photonics to microfluidic and biomedical applications with resolutions on the scale of tens of micrometers.
引用
收藏
页数:5
相关论文
共 28 条
[1]   Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics [J].
Camposeo, Andrea ;
Persano, Luana ;
Farsari, Maria ;
Pisignano, Dario .
ADVANCED OPTICAL MATERIALS, 2019, 7 (01)
[2]   Additive Manufacturing of Transparent Silica Glass from Solutions [J].
Cooperstein, Ido ;
Shukrun, Efrat ;
Press, Ofir ;
Kamyshny, Alexander ;
Magdassi, Shlomo .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (22) :18879-18885
[3]   In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration [J].
Dietrich, P. -I. ;
Blaicher, M. ;
Reuter, I. ;
Billah, M. ;
Hoose, T. ;
Hofmann, A. ;
Caer, C. ;
Dangel, R. ;
Offrein, B. ;
Troppenz, U. ;
Moehrle, M. ;
Freude, W. ;
Koos, C. .
NATURE PHOTONICS, 2018, 12 (04) :241-+
[4]  
Elvira KS, 2013, NAT CHEM, V5, P905, DOI [10.1038/nchem.1753, 10.1038/NCHEM.1753]
[5]  
Gissibl T, 2016, NAT PHOTONICS, V10, P554, DOI [10.1038/nphoton.2016.121, 10.1038/NPHOTON.2016.121]
[6]   Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres [J].
Gissibl, Timo ;
Thiele, Simon ;
Herkommer, Alois ;
Giessen, Harald .
NATURE COMMUNICATIONS, 2016, 7
[7]   Rapid Assembly of Small Materials Building Blocks (Voxels) into Large Functional 3D Metamaterials [J].
Hahn, Vincent ;
Kiefer, Pascal ;
Frenzel, Tobias ;
Qu, Jingyuan ;
Blasco, Eva ;
Barner-Kowollik, Christopher ;
Wegener, Martin .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (26)
[8]   Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching [J].
Hnatovsky, C. ;
Taylor, R. S. ;
Simova, E. ;
Rajeev, P. P. ;
Rayner, D. M. ;
Bhardwaj, V. R. ;
Corkum, P. B. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 84 (1-2) :47-61
[9]   Single- and multi-scan femtosecond laser writing for selective chemical etching of cross section patternable glass micro-channels [J].
Ho, Stephen ;
Herman, Peter R. ;
Aitchison, J. Stewart .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2012, 106 (01) :5-13
[10]  
Hulsenberg D., 2005, Microstructuring of Glasses