Proteomic profile of extracellular vesicles released by Lactiplantibacillus plantarum BGAN8 and their internalization by non-polarized HT29 cell line

被引:55
作者
Sokovic Bajic, Svetlana [1 ,3 ]
Canas, Maria-Alexandra [4 ,5 ,6 ]
Tolinacki, Maja [3 ]
Badia, Josefa [4 ,5 ]
Sanchez, Borja [1 ,2 ]
Golic, Natasa [3 ]
Margolles, Abelardo [1 ,2 ]
Baldoma, Laura [4 ,5 ]
Ruas-Madiedo, Patricia [1 ,2 ]
机构
[1] IPLA CSIC, Dept Microbiol & Biochem Dairy Prod, Villaviciosa, Asturias, Spain
[2] Inst Invest Sanit Principado Asturias ISPA, Grp Func & Ecol Beneficial Microbes, Oviedo, Asturias, Spain
[3] Univ Belgrade, LMM IMGGE, Belgrade, Serbia
[4] Univ Barcelona, Fac Farm & Ciencies Alimentacio, Dept Bioquim & Fisiol, Secc Bioquim & Biol Mol, Barcelona, Spain
[5] Univ Barcelona IBUB, Inst Biomed, Inst Recerca St Joan Deu IR SJD, Barcelona, Spain
[6] Inst Invest Biomed August Pi & Sunyer IDIBAPS, Hosp Clin, Lab Endocarditis Expt, Barcelona, Spain
关键词
OUTER-MEMBRANE VESICLES; HOST IMMUNE; MECHANISMS; DAMAGE;
D O I
10.1038/s41598-020-78920-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years the role of extracellular vesicles (EVs) of Gram-positive bacteria in host-microbe cross-talk has become increasingly appreciated, although the knowledge of their biogenesis, release and host-uptake is still limited. The aim of this study was to characterize the EVs released by the dairy isolate Lactiplantibacillus plantarum BGAN8 and to gain an insight into the putative mechanism of EVs uptake by intestinal epithelial cells. The cryo-TEM observation undoubtedly demonstrated the release of EVs (20 to 140 nm) from the surface of BGAN8, with exopolysaccharides seems to be part of EVs surface. The proteomic analysis revealed that the EVs are enriched in enzymes involved in central metabolic pathways, such as glycolysis, and in membrane components with the most abundant proteins belonging to amino acid/peptide ABC transporters. Putative internalization pathways were evaluated in time-course internalization experiments with non-polarized HT29 cells in the presence of inhibitors of endocytic pathways: chlorpromazine and dynasore (inhibitors of clathrin-mediated endocytosis-CME) and filipin III and nystatin (disrupting lipid rafts). For the first time, our results revealed that the internalization was specifically inhibited by dynasore and chlorpromazine but not by filipin III and nystatin implying that one of the entries of L. plantarum vesicles was through CME pathway.
引用
收藏
页数:12
相关论文
共 49 条
[1]   Proteomic analysis of outer membrane vesicles from the probiotic strain Escherichia coli Nissle 1917 [J].
Aguilera, Laura ;
Toloza, Lorena ;
Gimenez, Rosa ;
Odena, Antonia ;
Oliveira, Eliandre ;
Aguilar, Juan ;
Badia, Josefa ;
Baldoma, Laura .
PROTEOMICS, 2014, 14 (2-3) :222-229
[2]   Gut commensal microvesicles reproduce parent bacterial signals to host immune and enteric nervous systems [J].
Al-Nedawi, Khalid ;
Mian, M. Firoz ;
Hossain, Nazia ;
Karimi, Khalil ;
Mao, Yu-Kang ;
Forsythe, Paul ;
Min, Kevin K. ;
Stanisz, Andrew M. ;
Kunze, Wolfgang A. ;
Bienenstock, John .
FASEB JOURNAL, 2015, 29 (02) :684-695
[3]   The Immunomodulatory Properties of Extracellular Vesicles Derived from Probiotics: A Novel Approach for the Management of Gastrointestinal Diseases [J].
Alberto Molina-Tijeras, Jose ;
Galvez, Julio ;
Elena Rodriguez-Cabezas, Maria .
NUTRIENTS, 2019, 11 (05)
[4]   Staphylococcus aureus Membrane-Derived Vesicles Promote Bacterial Virulence and Confer Protective Immunity in Murine Infection Models [J].
Askarian, Fatemeh ;
Lapek, John D., Jr. ;
Dongre, Mitesh ;
Tsai, Chih-Ming ;
Kumaraswamy, Monika ;
Kousha, Armin ;
Valderrama, J. Andres ;
Ludviksen, Judith A. ;
Cavanagh, Jorunn P. ;
Uchiyama, Satoshi ;
Mollnes, Tom E. ;
Gonzalez, David J. ;
Wai, Sun N. ;
Nizet, Victor ;
Johannessen, Mona .
FRONTIERS IN MICROBIOLOGY, 2018, 9
[5]   GABA potentiate the immunoregulatory effects of Lactobacillus brevis BGZLS10-17 via ATG5-dependent autophagy in vitro [J].
Bajic, Svetlana Sokovic ;
Dokic, Jelena ;
Dinic, Miroslav ;
Tomic, Sergej ;
Popovic, Nikola ;
Brdaric, Emilija ;
Golic, Natasa ;
Tolinacki, Maja .
SCIENTIFIC REPORTS, 2020, 10 (01)
[6]   The Therapeutic Benefit of Bacterial Membrane Vesicles [J].
Bitto, Natalie J. ;
Kaparakis-Liaskos, Maria .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (06)
[7]   Energetics and mechanism of drug transport mediated by the lactococcal multidrug transporter LmrP [J].
Bolhuis, H ;
vanVeen, HW ;
Brands, JR ;
Putman, M ;
Poolman, B ;
Driessen, AJM ;
Konings, WN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (39) :24123-24128
[8]   Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi [J].
Brown, Lisa ;
Wolf, Julie M. ;
Prados-Rosales, Rafael ;
Casadevall, Arturo .
NATURE REVIEWS MICROBIOLOGY, 2015, 13 (10) :620-630
[9]   Outer Membrane Vesicles from the Probiotic Escherichia coli Nissle 1917 and the Commensal ECOR12 Enter Intestinal Epithelial Cells via Clathrin-Dependent Endocytosis and Elicit Differential Effects on DNA Damage [J].
Canas, Maria-Alexandra ;
Gimenez, Rosa ;
Fabrega, Maria-Jose ;
Toloza, Lorena ;
Baldoma, Laura ;
Badia, Josefa .
PLOS ONE, 2016, 11 (08)
[10]   Bacterial Membrane Vesicles as Mediators of Microbe - Microbe and Microbe - Host Community Interactions [J].
Caruana, Julie C. ;
Walper, Scott A. .
FRONTIERS IN MICROBIOLOGY, 2020, 11