Bohr-Rogosinski Inequalities for Bounded Analytic Functions

被引:9
作者
Alkhaleefah, Seraj A. [1 ]
Kayumov, Ilgiz R. [1 ]
Ponnusamy, Saminathan [2 ]
机构
[1] Kazan Volga Reg Fed Univ, NI Lobachevskii Inst Math & Mech, Kazan 420008, Tatarstan, Russia
[2] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
基金
俄罗斯科学基金会;
关键词
bounded analytic function; Bohr inequality; Bohr radius; Rogosinski inequality; Rogosinski radius; harmonic mappings; SUBORDINATING FAMILIES; POWER-SERIES; THEOREM; RADIUS;
D O I
10.1134/S1995080220110049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we first consider another version of the Rogosinski inequality for analytic functions f(z) = Sigma(infinity)(n=0) anzn in the unit disk vertical bar z vertical bar < 1, in which we replace the coefficients an (n = 0, 1,..., N) of the power series by the derivatives f((n))(z)/n! (n = 0, 1,..., N). Secondly, we obtain improved versions of the classical Bohr inequality and Bohr's inequality for the harmonic mappings of the form f = h+ g, where the analytic part h is bounded by 1 and that vertical bar g '(z)vertical bar <= k vertical bar h' (z)vertical bar in vertical bar z vertical bar < 1 and for some k is an element of [0, 1].
引用
收藏
页码:2110 / 2119
页数:10
相关论文
共 27 条
[21]  
Landau E., 1986, DARSTELLUNG BERGUNDU, V3, DOI [10.1007/978-3-642-71438-2, DOI 10.1007/978-3-642-71438-2]
[22]   Bohr-type inequalities of analytic functions [J].
Liu, Ming-Sheng ;
Shang, Yin-Miao ;
Xu, Jun-Feng .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
[23]   Bohr's inequality for uniform algebras [J].
Paulsen, VI ;
Singh, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (12) :3577-3579
[24]   On Bohr's inequality [J].
Paulsen, VI ;
Popescu, G ;
Singh, D .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 85 :493-512
[25]   On limits of power series and their segments [J].
Rogosinski, W .
MATHEMATISCHE ZEITSCHRIFT, 1923, 17 :260-276
[26]  
Ruscheweyh S., 1985, SERDICA, V11, P200
[27]  
Schur I, 1925, SITZBER PREUSS AKAD, P545