Bohr-Rogosinski Inequalities for Bounded Analytic Functions

被引:9
作者
Alkhaleefah, Seraj A. [1 ]
Kayumov, Ilgiz R. [1 ]
Ponnusamy, Saminathan [2 ]
机构
[1] Kazan Volga Reg Fed Univ, NI Lobachevskii Inst Math & Mech, Kazan 420008, Tatarstan, Russia
[2] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
基金
俄罗斯科学基金会;
关键词
bounded analytic function; Bohr inequality; Bohr radius; Rogosinski inequality; Rogosinski radius; harmonic mappings; SUBORDINATING FAMILIES; POWER-SERIES; THEOREM; RADIUS;
D O I
10.1134/S1995080220110049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we first consider another version of the Rogosinski inequality for analytic functions f(z) = Sigma(infinity)(n=0) anzn in the unit disk vertical bar z vertical bar < 1, in which we replace the coefficients an (n = 0, 1,..., N) of the power series by the derivatives f((n))(z)/n! (n = 0, 1,..., N). Secondly, we obtain improved versions of the classical Bohr inequality and Bohr's inequality for the harmonic mappings of the form f = h+ g, where the analytic part h is bounded by 1 and that vertical bar g '(z)vertical bar <= k vertical bar h' (z)vertical bar in vertical bar z vertical bar < 1 and for some k is an element of [0, 1].
引用
收藏
页码:2110 / 2119
页数:10
相关论文
共 27 条
[1]   Bohr radius for subordinating families of analytic functions and bounded harmonic mappings [J].
Abu Muhanna, Y. ;
Ali, Rosihan M. ;
Ng, Zhen Chuan ;
Hasni, Siti Farah M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) :124-136
[2]   Bohr's phenomenon for analytic functions into the exterior of a compact convex body [J].
Abu Muhanna, Y. ;
Ali, Rosihan M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) :512-517
[3]   Bohr's phenomenon for analytic functions and the hyperbolic metric [J].
Abu Muhanna, Yusuf ;
Ali, Rosihan M. .
MATHEMATISCHE NACHRICHTEN, 2013, 286 (11-12) :1059-1065
[4]   On the Rogosinski radius for holomorphic mappings and some of its applications [J].
Aizenberg, L ;
Elin, M ;
Shoikhet, D .
STUDIA MATHEMATICA, 2005, 168 (02) :147-158
[5]   Multidimensional analogues of Bohr's theorem on power series [J].
Aizenberg, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (04) :1147-1155
[6]   A Bohr phenomenon for elliptic equations [J].
Aizenberg, L ;
Tarkhanov, N .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 82 :385-401
[7]   Generalization of results about the Bohr radius for power series [J].
Aizenberg, Lev .
STUDIA MATHEMATICA, 2007, 180 (02) :161-168
[8]  
Ali RM., 2016, PROGR APPROXIMATION, P265
[9]   A note on Bohr's phenomenon for power series [J].
Ali, Rosihan M. ;
Barnard, Roger W. ;
Solynin, Alexander Yu. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) :154-167
[10]   ON THE BOHR INEQUALITY WITH A FIXED ZERO COEFFICIENT [J].
Alkhaleefah, Seraj A. ;
Kayumov, Ilgiz R. ;
Ponnusamy, Saminathan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (12) :5263-5274