Toward symmetric spaces of affine Kac-Moody type

被引:10
|
作者
Heintze, Ernst [1 ]
机构
[1] Univ Augsburg, Inst Math, D-86159 Augsburg, Germany
关键词
symmetric spaces; affine Kac-Moody algebras and groups; involutions; polar and hyperpolar actions; isoparametric submanifolds;
D O I
10.1142/S0219887806001648
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this expository article we discuss some ideas and results which might lead to a theory of infinite dimensional symmetric spaces (G) over cap/(K) over cap where (G) over cap is an affine Kac-Moody group and (K) over cap the fixed point group of an involution (of the second kind). We point out several striking similarities of these spaces with their finite dimensional counterparts and discuss their geometry. Furthermore we sketch a classification and show that they are essentially in 1: 1 correspondence with hyperpolar actions on compact simple Lie groups.
引用
收藏
页码:881 / 898
页数:18
相关论文
共 23 条
  • [1] Kac-Moody symmetric spaces
    Freyn, Walter
    Hartnick, Tobias
    Horn, Max
    Koehl, Ralf
    MUENSTER JOURNAL OF MATHEMATICS, 2020, 13 (01): : 1 - 114
  • [2] Quantum symmetric Kac-Moody pairs
    Kolb, Stefan
    ADVANCES IN MATHEMATICS, 2014, 267 : 395 - 469
  • [3] Finite Order Automorphisms and Real Forms of Affine Kac-Moody Algebras in the Smooth and Algebraic Category
    Heintze, Ernst
    Gross, Christian
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 219 (1030) : 1 - +
  • [4] Isomorphisms of unitary forms of Kac-Moody groups over finite fields
    Gramlich, Ralf
    Mars, Andreas
    JOURNAL OF ALGEBRA, 2009, 322 (02) : 554 - 561
  • [5] GEOMETRY OF SYMMETRIC SPACES OF TYPE EIII
    Petrov, V. A.
    Semenov, A. V.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2024, : 1055 - 1061
  • [6] Geometry of symmetric spaces of type EVI
    Petrov, Victor A.
    Semenov, Andrei V.
    JOURNAL OF ALGEBRA, 2024, 656 : 394 - 405
  • [7] Factorization theorems on symmetric spaces of noncompact type
    Graczyk, P
    JOURNAL OF THEORETICAL PROBABILITY, 1999, 12 (02) : 375 - 383
  • [8] Factorization Theorems on Symmetric Spaces of Noncompact Type
    Piotr Graczyk
    Journal of Theoretical Probability, 1999, 12 : 375 - 383
  • [9] A Geometric Mean for Symmetric Spaces of Noncompact Type
    Liao, Ming
    Liu, Xuhua
    Tam, Tin-Yau
    JOURNAL OF LIE THEORY, 2014, 24 (03) : 725 - 736
  • [10] Stability of Einstein metrics on symmetric spaces of compact type
    Schwahn, Paul
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 61 (02) : 333 - 357