An improved method for automatic determination of the planetary boundary layer height based on lidar data

被引:13
作者
Li, Hongxu [1 ,2 ]
Chang, Jianhua [1 ,2 ]
Liu, Zhenxing [2 ]
Zhang, Luyao [2 ]
Dai, Tengfei [2 ]
Chen, Sicheng [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equip, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Meteorol Observat & Informat Proc, Nanjing 210044, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Planetary boundary layer height; Lidar; Wavelet covariance transform; TOP; RADIOSONDE; TRANSFORM; CALIPSO;
D O I
10.1016/j.jqsrt.2020.107382
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The planetary boundary layer height (PBLH) is a primary parameter characterizing the boundary layer and its accurate estimation is critical. The wavelet covariance transform method is a common inversion algorithm of the PBLH estimation, but is subject to the problems of dilation selection and interference from clouds, aerosols, etc. An improved method combining the whale optimization algorithm (WOA) and the top limit (TL) is proposed to overcome these difficulties and realize the automatic determination of PBLH. In particular, the dilation obtained by WOA can be more accurate, to several decimal places, compared to the frequently-used empirical integers. The proposed method is tested on different simulation and real cases, and compared with radiosonde measurements. The results show that the improved method is accurate, effective and stable for automatic retrieval of PBLH based only on simple micropulse lidar (MPL), without the aid of other measurements. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 38 条
  • [1] A new methodology for PBL height estimations based on lidar depolarization measurements: analysis and comparison against MWR and WRF model-based results
    Antonio Bravo-Aranda, Juan
    Moreira, Gregori de Arruda
    Navas-Guzman, Francisco
    Jose Granados-Munoz, Maria
    Luis Guerrero-Rascado, Juan
    Pozo-Vazquez, David
    Arbizu-Barrena, Clara
    Olmo Reyes, Francisco Jose
    Mallet, Marc
    Alados Arboledas, Lucas
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (11) : 6839 - 6851
  • [2] Brooks IM, 2003, J ATMOS OCEAN TECH, V20, P1092, DOI 10.1175/1520-0426(2003)020<1092:FBLTAO>2.0.CO
  • [3] 2
  • [4] Wavelet Correlation Transform Method and Gradient Method to Determine Aerosol Layering from Lidar Returns: Some Comments
    Comeron, Adolfo
    Sicard, Michael
    Rocadenbosch, Francesc
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2013, 30 (06) : 1189 - 1193
  • [5] A Review of Techniques for Diagnosing the Atmospheric Boundary Layer Height (ABLH) Using Aerosol Lidar Data
    Dang, Ruijun
    Yang, Yi
    Hu, Xiao-Ming
    Wang, Zhiting
    Zhang, Shuwen
    [J]. REMOTE SENSING, 2019, 11 (13)
  • [6] Atmosphere Boundary Layer Height (ABLH) Determination under Multiple-Layer Conditions Using Micro-Pulse Lidar
    Dang, Ruijun
    Yang, Yi
    Li, Hong
    Hu, Xiao-Ming
    Wang, Zhiting
    Huang, Zhongwei
    Zhou, Tian
    Zhang, Tiejun
    [J]. REMOTE SENSING, 2019, 11 (03):
  • [7] Davis KJ, 2000, J ATMOS OCEAN TECH, V17, P1455, DOI 10.1175/1520-0426(2000)017<1455:AOMFDA>2.0.CO
  • [8] 2
  • [9] Study of the planetary boundary layer by microwave radiometer, elastic lidar and Doppler lidar estimations in Southern Iberian Peninsula
    de Arruda Moreira, Gregori
    Luis Guerrero-Rascado, Juan
    Antonio Bravo-Aranda, Juan
    Antonio Benavent-Oltra, Jose
    Ortiz-Amezcua, Pablo
    Roman, Roberto
    Esteban Bedoya-Velasquez, Andres
    Landulfo, Eduardo
    Alados-Arboledas, Lucas
    [J]. ATMOSPHERIC RESEARCH, 2018, 213 : 185 - 195
  • [10] GAMAGE N, 1993, J ATMOS SCI, V50, P750, DOI 10.1175/1520-0469(1993)050<0750:DAAOMA>2.0.CO