POWER SPECTRUM OF THE GEODESIC FLOW ON HYPERBOLIC MANIFOLDS

被引:45
作者
Dyatlov, Semyon [1 ]
Faure, Frederic [2 ]
Guillarmou, Colin [3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Univ Joseph Fourier, Inst Fourier, F-38402 St Martin Dheres, France
[3] Ecole Normale Super, CNRS, DMA, UMR 8553, F-75230 Paris, France
关键词
Pollicott-Ruelle resonances; hyperbolic manifolds; SELBERG ZETA-FUNCTION; ANOSOV-FLOWS; EIGENFUNCTIONS; INVARIANT; DISTRIBUTIONS; LAPLACIAN; OPERATORS; SPACES; DECAY;
D O I
10.2140/apde.2015.8.923
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the complex poles of the power spectrum of correlations for the geodesic flow on compact hyperbolic manifolds in terms of eigenvalues of the Laplacian acting on certain natural tensor bundles. These poles are a special case of Pollicott-Ruelle resonances, which can be defined for general Anosov flows. In our case, resonances are stratified into bands by decay rates. The proof also gives an explicit relation between resonant states and eigenstates of the Laplacian.
引用
收藏
页码:923 / 1000
页数:78
相关论文
共 55 条
[1]  
Abramowitz M., 1964, NBS APPL MATH SERIES, V55
[2]   Patterson-sullivan distributions and quantum ergodicity [J].
Anantharaman, Nalini ;
Zelditch, Steve .
ANNALES HENRI POINCARE, 2007, 8 (02) :361-426
[3]   Intertwining the geodesic flow and the Schrodinger group on hyperbolic surfaces [J].
Anantharaman, Nalini ;
Zelditch, Steve .
MATHEMATISCHE ANNALEN, 2012, 353 (04) :1103-1156
[4]   Decay and non-decay of the local energy for the wave equation on the De Sitter-Schwarzschild metric [J].
Bony, Jean-Francois ;
Hafner, Dietrich .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (03) :697-719
[5]   Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group [J].
Bunke, U ;
Olbrich, M .
ANNALS OF MATHEMATICS, 1999, 149 (02) :627-689
[6]   Fuchsian groups of the second kind and representations carried by the limit set [J].
Bunke, U ;
Olbrich, M .
INVENTIONES MATHEMATICAE, 1997, 127 (01) :127-154
[7]  
Bunke U., 2001, PREPRINT
[8]  
Bunke U., 1995, MATH RES, V83
[9]   Smooth Anosov flows: Correlation spectra and stability [J].
Butterley, Oliver ;
Liverani, Carlangelo .
JOURNAL OF MODERN DYNAMICS, 2007, 1 (02) :301-322
[10]  
Dairbekov N.S., 2010, Mat. Tr., V13, P85