A Bayesian Framework for Generalized Linear Mixed Modeling Identifies New Candidate Loci for Late-Onset Alzheimer's Disease

被引:14
作者
Wang, Xulong [1 ]
Philip, Vivek M. [1 ]
Ananda, Guruprasad [2 ]
White, Charles C. [3 ]
Malhotra, Ankit [2 ]
Michalski, Paul J. [2 ]
Karuturi, Krishna R. Murthy [2 ]
Chintalapudi, Sumana R. [1 ]
Acklin, Casey [1 ]
Sasner, Michael [1 ]
Bennett, David A. [4 ]
De Jager, Philip L. [3 ,5 ]
Howell, Gareth R. [1 ]
Carter, Gregory W. [1 ]
机构
[1] Jackson Lab Mammalian Genet, 600 Main St, Bar Harbor, ME 04609 USA
[2] Jackson Lab Genom Med, Farmington, CT 06032 USA
[3] Broad Inst, Cambridge, MA 02142 USA
[4] Rush Univ, Rush Alzheimers Dis Ctr, Med Ctr, Chicago, IL 60612 USA
[5] Columbia Univ, Med Ctr, Dept Neurol, Ctr Translat & Computat Neuroimmunol, New York, NY 10027 USA
关键词
genome-wide association; whole-genome sequencing; Alzheimer's disease; GENOME-WIDE ASSOCIATION; GENETIC ASSOCIATION; POPULATION-STRUCTURE; COMMON VARIANTS; METAANALYSIS; CLU; DYSREGULATION; DYSFUNCTION; RESOURCE; PICALM;
D O I
10.1534/genetics.117.300673
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Recent technical and methodological advances have greatly enhanced genome-wide association studies (GWAS). The advent of low-cost, whole-genome sequencing facilitates high-resolution variant identification, and the development of linear mixed models (LMM) allows improved identification of putatively causal variants. While essential for correcting false positive associations due to sample relatedness and population stratification, LMMs have commonly been restricted to quantitative variables. However, phenotypic traits in association studies are often categorical, coded as binary case-control or ordered variables describing disease stages. To address these issues, we have devised a method for genomic association studies that implements a generalized LMM (GLMM) in a Bayesian framework, called Bayes-GLMM. Bayes-GLMM has four major features: (1) support of categorical, binary, and quantitative variables; (2) cohesive integration of previous GWAS results for related traits; (3) correction for sample relatedness by mixed modeling; and (4) model estimation by both Markov chain Monte Carlo sampling and maximal likelihood estimation. We applied Bayes-GLMM to the whole-genome sequencing cohort of the Alzheimer's Disease Sequencing Project. This study contains 570 individuals from 111 families, each with Alzheimer's disease diagnosed at one of four confidence levels. Using Bayes-GLMM we identified four variants in three loci significantly associated with Alzheimer's disease. Two variants, rs140233081 and rs149372995, lie between PRKAR1B and PDGFA. The coded proteins are localized to the glial-vascular unit, and PDGFA transcript levels are associated with Alzheimer's disease-related neuropathology. In summary, this work provides implementation of a flexible, generalized mixed-model approach in a Bayesian framework for association studies.
引用
收藏
页码:51 / 64
页数:14
相关论文
共 46 条
[1]   A global reference for human genetic variation [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Wang, Jun ;
Wilson, Richard K. ;
Boerwinkle, Eric ;
Doddapaneni, Harsha ;
Han, Yi ;
Korchina, Viktoriya ;
Kovar, Christie ;
Lee, Sandra ;
Muzny, Donna ;
Reid, Jeffrey G. ;
Zhu, Yiming ;
Chang, Yuqi ;
Feng, Qiang ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Lan, Tianming ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Liu, Shengmao ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Tang, Meifang ;
Wang, Bo .
NATURE, 2015, 526 (7571) :68-+
[2]  
[Anonymous], 2001, In all likelihood: statistical modelling and inference using likelihood
[3]   The Imbalance of Vascular Molecules in Alzheimer's Disease [J].
Bell, Robert D. .
JOURNAL OF ALZHEIMERS DISEASE, 2012, 32 (03) :699-709
[4]  
Bennett DA, 2012, CURR ALZHEIMER RES, V9, P646
[5]  
Bennett DA, 2012, CURR ALZHEIMER RES, V9, P628
[6]   The NIH Roadmap Epigenomics Mapping Consortium [J].
Bernstein, Bradley E. ;
Stamatoyannopoulos, John A. ;
Costello, Joseph F. ;
Ren, Bing ;
Milosavljevic, Aleksandar ;
Meissner, Alexander ;
Kellis, Manolis ;
Marra, Marco A. ;
Beaudet, Arthur L. ;
Ecker, Joseph R. ;
Farnham, Peggy J. ;
Hirst, Martin ;
Lander, Eric S. ;
Mikkelsen, Tarjei S. ;
Thomson, James A. .
NATURE BIOTECHNOLOGY, 2010, 28 (10) :1045-1048
[7]   Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses [J].
Bertram, Lars ;
Tanzi, Rudolph E. .
NATURE REVIEWS NEUROSCIENCE, 2008, 9 (10) :768-778
[8]   Stan: A Probabilistic Programming Language [J].
Carpenter, Bob ;
Gelman, Andrew ;
Hoffman, Matthew D. ;
Lee, Daniel ;
Goodrich, Ben ;
Betancourt, Michael ;
Brubaker, Marcus A. ;
Guo, Jiqiang ;
Li, Peter ;
Riddell, Allen .
JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01) :1-29
[9]   Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models [J].
Chen, Han ;
Wang, Chaolong ;
Conomos, Matthew P. ;
Stilp, Adrienne M. ;
Li, Zilin ;
Sofer, Tamar ;
Szpiro, Adam A. ;
Chen, Wei ;
Brehm, John M. ;
Celedon, Juan C. ;
Redline, Susan ;
Papanicolaou, George J. ;
Thornton, Timothy A. ;
Laurie, Cathy C. ;
Rice, Kenneth ;
Lin, Xihong .
AMERICAN JOURNAL OF HUMAN GENETICS, 2016, 98 (04) :653-666
[10]   QTLRel: an R Package for Genome-wide Association Studies in which Relatedness is a Concern [J].
Cheng, Riyan ;
Abney, Mark ;
Palmer, Abraham A. ;
Skol, Andrew D. .
BMC GENETICS, 2011, 12