Lattices in some symplectic or affine nilpotent Lie groups

被引:0
作者
Medina, Alberto [1 ]
Revoy, Philippe [1 ]
机构
[1] Univ Montpellier 2, UMR CNRS 5149, Dept Math, F-34095 Montpellier 5, France
关键词
Lattices; Symplectic Lie groups; Affine Lie groups; Compact nilmanifolds; DOUBLE EXTENSION; MANIFOLDS; ALGEBRAS;
D O I
10.1016/j.geomphys.2014.03.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim of this paper is the description of a large class of lattices in some nilpotent Lie groups, sometimes filiforms, carrying a flat left invariant linear connection and often a left invariant symplectic form. As a consequence we obtain an infinity of, non homeomorphic, compact affine or symplectic nilmanifolds. We review some new facts about the geometry of compact symplectic nilmanifolds and we describe symplectic reduction for these manifolds. For the Heisenberg-Lie group, defined over a local associative and commutative finite dimensional real algebra, a necessary and sufficient condition for the existence of a left invariant symplectic form, is given. Finally in the symplectic case we show that a lattice in the group determines naturally lattices in the double Lie group corresponding to any solution of the classical Yang-Baxter equation. (C) 2014 Published by Elsevier B.V.
引用
收藏
页码:72 / 86
页数:15
相关论文
共 23 条
[1]  
[Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
[2]   Symplectic structures on quadratic Lie algebras [J].
Bajo, Ignacio ;
Benayadi, Said ;
Medina, Alberto .
JOURNAL OF ALGEBRA, 2007, 316 (01) :174-188
[3]   KAHLER AND SYMPLECTIC STRUCTURES ON NILMANIFOLDS [J].
BENSON, C ;
GORDON, CS .
TOPOLOGY, 1988, 27 (04) :513-518
[4]  
Bon-Yao C., 1974, T AM MATH SOC, V197, P145
[5]   Solutions of the Yang-Baxter equations on quadratic Lie groups: The case of oscillator groups [J].
Boucetta, Mohamed ;
Medina, Alberto .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (12) :2309-2320
[6]   Kahlerian Lie algebras and double extension [J].
Dardie, JM ;
Medina, A .
JOURNAL OF ALGEBRA, 1996, 185 (03) :774-795
[7]   Double extension symplectique d'un groupe de Lie symplectique [J].
Dardie, JM ;
Medina, A .
ADVANCES IN MATHEMATICS, 1996, 117 (02) :208-227
[8]   Polynomial structures and the uniqueness of affinely flat infra-nilmanifolds [J].
Dekimpe, K .
MATHEMATISCHE ZEITSCHRIFT, 1997, 224 (03) :457-481
[9]   PERIODIC HAMILTONIANS AND CONVEX IMAGES OF MOMENTUM MAPPING [J].
DELZANT, T .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (03) :315-339
[10]   Classical Yang-Baxter equation and left invariant affine geometry on Lie groups [J].
Diatta, A ;
Medina, A .
MANUSCRIPTA MATHEMATICA, 2004, 114 (04) :477-486