Characterization of high-strength high-nitrogen austenitic stainless steel synthesized from nitrided powders by spark plasma sintering

被引:38
|
作者
Hu, Ling [1 ,2 ]
Peng, Hanlin [2 ,3 ]
Baker, Ian [2 ]
Li, Liejun [1 ]
Zhang, Weipeng [1 ]
Ngai, Tungwai [1 ]
机构
[1] South China Univ Technol, Natl Engn Res Ctr Near Net Shape Forming Technol, Guangzhou 510640, Guangdong, Peoples R China
[2] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
[3] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & & Mould Technol, Wuhan 430074, Hubei, Peoples R China
关键词
High-N austenitic stainless steel; Nitriding; Nitride precipitate; XPS; Strengthening mechanisms; HEAT-TREATMENT; DISCONTINUOUS PRECIPITATION; MECHANICAL-PROPERTIES; TEMPERATURE; CHROMIUM; XPS; MICROSTRUCTURE; BEHAVIORS; CARBIDES; CR2N;
D O I
10.1016/j.matchar.2019.04.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A high-N austenitic stainless steel (HNASS) was fabricated using a novel approach, in which duplex stainless steel powders were firstly gas nitrided in the temperature range of 700-900 degrees C and then consolidated using spark plasma sintering, resulting in an FCC matrix with average grain sizes of 1.6-8.2 mu m. The Cr2N precipitates transformed from cellular precipitates (lamellar within the grains) to intergranular precipitation (equiaxed along the grain boundaries) as the nitriding temperature rose from 700 degrees C to 750 degrees C, and the N content rose from 0.68 wt% to 1.71 wt%. The 700 degrees C-treated alloy exhibits a yield strength of 783 MPa, a high tensile strength of 1091 MPa, and an elongation of 41% while the 900 degrees C-treated alloy exhibits an ultra-high compressive strength of 3017 MPa, and hardness of 520 HV. These values dramatically exceed the published values of similar HNASSs. Quantitative calculations showed that these superior mechanical properties could be attributed to increased solid solution and grain boundary strengthening. Furthermore, it can be inferred that while the equiaxed Cr2N phase increased the yield strength, it greatly degraded the fracture toughness.
引用
收藏
页码:76 / 84
页数:9
相关论文
共 50 条
  • [1] High-cycle fatigue behavior of high-nitrogen austenitic stainless steel
    Dai, Qixun
    Yuan, Zhizhong
    Chen, Xi
    Chen, Kangmin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 517 (1-2): : 257 - 260
  • [2] Enhancing yield strength of high nitrogen austenitic stainless steel
    Wang, Yong
    Wang, Yuefeng
    Wang, Zhenhua
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2021, 187
  • [3] Influence of Hydrogen Reduction on the Properties of Porous High-Nitrogen Austenitic Stainless Steel
    Zhang, Weipeng
    Li, Liejun
    Ngai, Tungwai
    Hu, Ling
    MATERIALS, 2022, 15 (16)
  • [4] Effect of nitrogen content on corrosion behavior of high-nitrogen austenitic stainless steel
    Gao, Fengyin
    Qiao, Yanxin
    Chen, Jian
    Yang, Lanlan
    Zhou, Huiling
    Zheng, Zhibin
    Zhang, Lianmin
    NPJ MATERIALS DEGRADATION, 2023, 7 (01)
  • [5] Microstructural characterization of plasma nitrided austenitic stainless steel
    Xu, XL
    Wang, L
    Yu, ZW
    Hei, ZK
    SURFACE & COATINGS TECHNOLOGY, 2000, 132 (2-3): : 270 - 274
  • [6] Work-Hardening Mechanism in High-Nitrogen Austenitic Stainless Steel
    Masumura, Takuro
    Seto, Yuki
    Tsuchiyama, Toshihiro
    Kimura, Ken
    MATERIALS TRANSACTIONS, 2020, 61 (04) : 678 - 684
  • [7] Effect of solution treatment on cavitation erosion behavior of high-nitrogen austenitic stainless steel
    Qiao, Yanxin
    Chen, Jian
    Zhou, Huiling
    Wang, Yuxin
    Song, Qining
    Li, Huabing
    Zheng, Zhibin
    WEAR, 2019, 424 : 70 - 77
  • [8] Heating modification of an austenitic steel with high-nitrogen content
    Carosi, A.
    Amati, M.
    Gregoratti, L.
    Kaciulis, S.
    Mezzi, A.
    Montanari, R.
    Rovatti, L.
    Ucciardello, N.
    SURFACE AND INTERFACE ANALYSIS, 2010, 42 (6-7) : 726 - 729
  • [9] Age-Hardening Behavior in High-Nitrogen Stable Austenitic Stainless Steel
    Masumura, Takuro
    Honda, Tatsuya
    Naridomi, Kosuke
    Uranaka, Shohei
    Tsuchiyama, Toshihiro
    Miyamoto, Goro
    Yamasaki, Shota
    MATERIALS TRANSACTIONS, 2022, 63 (02) : 163 - 169
  • [10] High-strength, high-nitrogen stainless steel-copper composite wires for conductors in pulsed high-field magnets
    Grünberger, W
    Heilmaier, M
    Schultz, L
    MATERIALS LETTERS, 2002, 52 (03) : 154 - 158