Isoparametric second order Nedelec tetrahedral finite element

被引:0
作者
Casas-Sanchez, M [1 ]
García-Castillo, LE [1 ]
机构
[1] Univ Alcala de Henares, Escuela Politecn, Dept Teoria Senal & Comunicac, Alcala De Henares 28806, Madrid, Spain
来源
IEEE ANTENNAS AND PROPAGATION SOCIETY SYMPOSIUM, VOLS 1-4 2004, DIGEST | 2004年
关键词
D O I
10.1109/APS.2004.1329651
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
A rigorous implementation of the isoparametric second order Nedelec tetrahedral element is presented. The basis functions are defined in the master element. A second-order Lagrange mapping is defined between each real element of the mesh and the master element. A classical projection approach and one based on the octree method may be used to obtain the mapping parameters. The basis functions of the real element are obtained by transforming as gradients the basis functions of the master element. Several numerical results of the application of the isoparametric element thus obtained in the context of the eigenvalue finite element analysis of microwave cavities are shown.
引用
收藏
页码:371 / 374
页数:4
相关论文
共 50 条
[41]   A Finite Element formulation for waveguides with first and second order symmetries [J].
Garcia-Contreras, Gines ;
Corcoles, Juan ;
Ruiz-Cruz, Jorge A. .
2021 51ST EUROPEAN MICROWAVE CONFERENCE (EUMC), 2021, :478-481
[42]   Finite volume element method for second order hyperbolic equations [J].
Kumar, Sarvesh ;
Nataraj, Neela ;
Pani, Amiya K. .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2008, 5 (01) :132-151
[43]   A FINITE ELEMENT SPLITTING EXTRAPOLATION FOR SECOND ORDER HYPERBOLIC EQUATIONS [J].
He, Xiaoming ;
Lue, Tao .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (06) :4244-4265
[44]   An optimal order numerical quadrature approximation of a planar isoparametric eigenvalue problem on triangular finite element meshes [J].
A.B. Andreev ;
M.S. Petrov ;
T.D. Todorov .
CALCOLO, 2005, 42 :47-69
[45]   High order isoparametric elements in boundary element method Smooth spheroidal element [J].
Ma, Hang ;
He, Donghong ;
Tian, Yu .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 104 :34-45
[46]   ERROR ESTIMATE IN AN ISOPARAMETRIC FINITE-ELEMENT EIGENVALUE PROBLEM [J].
LEBAUD, MP .
MATHEMATICS OF COMPUTATION, 1994, 63 (207) :19-40
[47]   Cascadic multigrid method for isoparametric finite element with numerical integration [J].
Bi, CJ ;
Li, LK .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2004, 22 (01) :123-136
[49]   A Second-Order Reconstruction for the Weak Galerkin Finite Element Method of Lowest Order [J].
Huang, Weizhang ;
Wang, Zhuoran .
JOURNAL OF SCIENTIFIC COMPUTING, 2025, 104 (03)
[50]   Isoparametric finite-element approximation of a Steklov eigenvalue problem [J].
Andreev, AB ;
Todorov, TD .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (02) :309-322