Hairy black holes, boson stars and non-minimal coupling to curvature invariants

被引:32
作者
Brihaye, Y. [1 ]
Ducobu, L. [1 ]
机构
[1] Univ Mons, Phys Math, Mons, Belgium
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.physletb.2019.06.006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Einstein-Klein-Gordon Lagrangian is supplemented by a non-minimal coupling of the scalar field to specific geometric invariants: the Gauss-Bonnet term and the Chern-Simons term. The non-minimal coupling is chosen as a general quadratic polynomial in the scalar field and allows - depending on the parameters - for large families of hairy black holes to exist. These solutions are characterized, namely, by the number of nodes of the scalar function. The fundamental family encompasses black holes whose scalar hairs appear spontaneously and solutions presenting shift-symmetric hairs. When supplemented by an appropriate potential, the model possesses both hairy black holes and non-topological solitons: boson stars. These latter exist in the standard Einstein-Klein-Gordon equations; it is shown that the coupling to the Gauss-Bonnet term modifies considerably their domain of classical stability. (C) 2019 The Authors. Published by Elsevier B.V.
引用
收藏
页码:135 / 143
页数:9
相关论文
共 33 条
[1]  
[Anonymous], ARXIV181205590GRQC
[2]   Black-hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories [J].
Antoniou, G. ;
Bakopoulos, A. ;
Kanti, P. .
PHYSICAL REVIEW D, 2018, 97 (08)
[3]   Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories [J].
Antoniou, G. ;
Bakopoulos, A. ;
Kanti, P. .
PHYSICAL REVIEW LETTERS, 2018, 120 (13)
[4]  
ASCHER U, 1979, MATH COMPUT, V33, P659, DOI 10.1090/S0025-5718-1979-0521281-7
[5]  
ASCHER U, 1981, ACM T MATH SOFTWARE, V7, P209, DOI 10.1145/355945.355950
[6]  
Bakopoulos A., ARXIV181206941HEPTH
[7]   NOVEL NO-SCALAR-HAIR THEOREM FOR BLACK-HOLES [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1995, 51 (12) :R6608-R6611
[8]   TRANSCENDENCE OF LAW OF BARYON-NUNBER CONSERVATION IN BLACK HOLE PHYSICS [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW LETTERS, 1972, 28 (07) :452-+
[9]   Nutty black holes in Galileon scalar-tensor gravity [J].
Brandelet, A. ;
Brihaye, Y. ;
Delsate, T. ;
Ducobu, L. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2018, 33 (32)
[10]   Nutty dyons [J].
Brihaye, Y ;
Radu, E .
PHYSICS LETTERS B, 2005, 615 (1-2) :1-13