Gene set analysis methods for the functional interpretation of non-mRNA data-Genomic range and ncRNA data

被引:6
作者
Mora, Antonio [1 ,2 ]
机构
[1] Guangzhou Med Univ, Joint Sch Life Sci, Guangzhou, Peoples R China
[2] Chinese Acad Sci, Guangzhou Inst Biomed & Hlth, Beijing, Peoples R China
关键词
pathway analysis; gene set analysis; ChIP-Seq; SNP; methylation; miRNA; lncRNA; ENRICHMENT ANALYSIS; PATHWAY ANALYSIS; R PACKAGE; WIDE ASSOCIATION; EXPRESSION DATA; NONCODING RNAS; SNP DATA; RESOURCE; LISTS; METAANALYSIS;
D O I
10.1093/bib/bbz090
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Gene set analysis (GSA) is one of the methods of choice for analyzing the results of current omics studies; however, it has been mainly developed to analyze mRNA (microarray, RNA-Seq) data. The following review includes an update regarding general methods and resources for GSA and then emphasizes GSA methods and tools for non-mRNA omics datasets, specifically genomic range data (ChIP-Seq, SNP and methylation) and ncRNA data (miRNAs, lncRNAs and others). In the end, the state of the GSA field for non-mRNA datasets is discussed, and some current challenges and trends are highlighted, especially the use of network approaches to face complexity issues.
引用
收藏
页码:1495 / 1508
页数:14
相关论文
共 131 条
[1]   A general modular framework for gene set enrichment analysis [J].
Ackermann, Marit ;
Strimmer, Korbinian .
BMC BIOINFORMATICS, 2009, 10
[2]   Improved scoring of functional groups from gene expression data by decorrelating GO graph structure [J].
Alexa, Adrian ;
Rahnenfuehrer, Joerg ;
Lengauer, Thomas .
BIOINFORMATICS, 2006, 22 (13) :1600-1607
[3]   Network enrichment analysis: extension of gene-set enrichment analysis to gene networks [J].
Alexeyenko, Andrey ;
Lee, Woojoo ;
Pernemalm, Maria ;
Guegan, Justin ;
Dessen, Philippe ;
Lazar, Vladimir ;
Lehtio, Janne ;
Pawitan, Yudi .
BMC BIOINFORMATICS, 2012, 13
[4]  
Alhamdoosh Monther, 2017, F1000Res, V6, P2010, DOI 10.12688/f1000research.12544.1
[5]   miARma-Seq: a comprehensive tool for miRNA, mRNA and circRNA analysis [J].
Andres-Leon, Eduardo ;
Nunez-Torres, Rocio ;
Rojas, Ana M. .
SCIENTIFIC REPORTS, 2016, 6
[6]  
[Anonymous], 2015, PLOS COMPUT BIOL
[7]   Prediction of lncRNAs and their interactions with nucleic acids: benchmarking bioinformatics tools [J].
Antonov, Ivan V. ;
Mazurov, Evgeny ;
Borodovsky, Mark ;
Medvedeva, Yulia A. .
BRIEFINGS IN BIOINFORMATICS, 2019, 20 (02) :551-564
[8]   miEAA: microRNA enrichment analysis and annotation [J].
Backes, Christina ;
Khaleeq, Qurratulain T. ;
Meese, Eckart ;
Keller, Andreas .
NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) :W110-W116
[9]   Comparisons of Multi-Marker Association Methods to Detect Association Between a Candidate Region and Disease [J].
Ballard, David H. ;
Cho, Judy ;
Zhao, Hongyu .
GENETIC EPIDEMIOLOGY, 2010, 34 (03) :201-212
[10]   Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 [J].
Barbie, David A. ;
Tamayo, Pablo ;
Boehm, Jesse S. ;
Kim, So Young ;
Moody, Susan E. ;
Dunn, Ian F. ;
Schinzel, Anna C. ;
Sandy, Peter ;
Meylan, Etienne ;
Scholl, Claudia ;
Froehling, Stefan ;
Chan, Edmond M. ;
Sos, Martin L. ;
Michel, Kathrin ;
Mermel, Craig ;
Silver, Serena J. ;
Weir, Barbara A. ;
Reiling, Jan H. ;
Sheng, Qing ;
Gupta, Piyush B. ;
Wadlow, Raymond C. ;
Le, Hanh ;
Hoersch, Sebastian ;
Wittner, Ben S. ;
Ramaswamy, Sridhar ;
Livingston, David M. ;
Sabatini, David M. ;
Meyerson, Matthew ;
Thomas, Roman K. ;
Lander, Eric S. ;
Mesirov, Jill P. ;
Root, David E. ;
Gilliland, D. Gary ;
Jacks, Tyler ;
Hahn, William C. .
NATURE, 2009, 462 (7269) :108-U122