Ultraviolet spectral reflectance of carbonaceous materials

被引:30
|
作者
Applin, Daniel M. [1 ]
Izawa, Matthew R. M. [1 ,2 ]
Cloutis, Edward A. [1 ]
Gillis-Davis, Jeffrey J. [3 ]
Pitman, Karly M. [4 ]
Roush, Ted L. [5 ]
Hendrix, Amanda R. [6 ]
Lucey, Paul G. [3 ]
机构
[1] Univ Winnipeg, Dept Geog, 515 Portage Ave, Winnipeg, MB R3B 2E9, Canada
[2] Okayama Univ, Inst Planetary Mat, 827 Yamada, Misasa, Tottori 6820193, Japan
[3] Univ Hawaii, Hawaii Inst Geophys & Planetol, 2525 Correa Rd, Honolulu, HI 96822 USA
[4] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA
[5] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[6] Planetary Sci Inst, 1700 East Ft Lowell,Suite 106, Tucson, AZ 85719 USA
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Carbon; Graphite; Ultraviolet; Reflectance spectroscopy; Airless bodies; POLYCYCLIC AROMATIC-HYDROCARBONS; OPTICAL-PROPERTIES; VACUUM-ULTRAVIOLET; X-RAY; MERCURYS SURFACE; ABSORPTION-SPECTRA; ORGANIC-MOLECULES; FAR-ULTRAVIOLET; DARK MATERIAL; IR-SPECTRA;
D O I
10.1016/j.icarus.2018.02.012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A number of planetary spacecraft missions have carried instruments with sensors covering the ultraviolet (UV) wavelength range. However, there exists a general lack of relevant UV reflectance laboratory data to compare against these planetary surface remote sensing observations in order to make confident material identifications. To address this need, we have systematically analyzed reflectance spectra of carbonaceous materials in the 200-500 nm spectral range, and found spectral-compositional-structural relationships that suggest this wavelength region could distinguish between otherwise difficult-to-identify carbon phases. In particular (and by analogy with the infrared spectral region), large changes over short wavelength intervals in the refractive indices associated with the trigonal sp(2) pi-pi* transition of carbon can lead to Fresnel peaks and Christiansen-like features in reflectance. Previous studies extending to shorter wavelengths also show that anomalous dispersion caused by the sigma-sigma* transition associated with both the trigonal sp(2) and tetrahedral sp(3) sites causes these features below lambda = 200 nm. The peak wavelength positions and shapes of pi-pi* and sigma-sigma* features contain information on sp(3)/sp(2), structure, crystallinity, and powder grain size. A brief comparison with existing observational data indicates that the carbon fraction of the surface of Mercury is likely amorphous and submicroscopic, as is that on the surface of the martian satellites Phobos and Deimos, and possibly comet 67P/Churyumov-Gerasimenko, while further coordinated observations and laboratory experiments should refine these feature assignments and compositional hypotheses. The new laboratory diffuse reflectance data reported here provide an important new resource for interpreting UV reflectance measurements from planetary surfaces throughout the solar system, and confirm that the UV can be rich in important spectral information. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:40 / 82
页数:43
相关论文
共 50 条
  • [41] ON THE SPECTRAL REFLECTANCE PROPERTIES OF MATERIALS EXPOSED AT THE VIKING LANDING SITES
    GUINNESS, EA
    ARVIDSON, RE
    DALEBANNISTER, MA
    SINGER, RB
    BRUCKENTHAL, EA
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1987, 92 (B4): : E575 - E587
  • [42] Reflectance spectra of selected carbonaceous chondrites
    Cloutis, EA
    Hudon, P
    METEORITICS & PLANETARY SCIENCE, 2004, 39 (08) : A23 - A23
  • [43] Ultraviolet Spectral Reflectance of Ceiling Tiles, and Implications for the Safe Use of Upper-Room Ultraviolet Germicidal Irradiation
    Wengraitis, Stephen
    Reed, Nicholas G.
    PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2012, 88 (06) : 1480 - 1488
  • [44] THE ULTRAVIOLET SPECTRA OF CARBONACEOUS CHONDRITES
    Inagaki, T.
    Yabushita, S.
    Wada, K.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1992, 54 (1-3): : 229 - 231
  • [45] CHANGES IN REFLECTANCE SPECTRA OF A CM2 CARBONACEOUS CHONDRITE: SIMULATION OF SPACE WEATHERING BY ULTRAVIOLET IRRADIATION.
    Kaiden, H.
    Hiroi, T.
    Misawa, K.
    Tanaka, H.
    Sasaki, S.
    Robertson, K. M.
    Milliken, R. E.
    Masai, H.
    Terao, J.
    METEORITICS & PLANETARY SCIENCE, 2019, 54
  • [46] Ultraviolet reflectance dermoscopy
    Kaliyadan, Feroze
    Jayasree, Puravoor
    Ashique, Karalikkattil
    INDIAN JOURNAL OF DERMATOLOGY VENEREOLOGY & LEPROLOGY, 2024, 90 (06): : 838 - 841
  • [47] Ultraviolet reflectance analyser
    不详
    OPTICS AND LASER TECHNOLOGY, 1997, 29 (07): : III - III
  • [49] SPECTRAL REFLECTANCE AND EMITTANCE OF PARTICULATE MATERIALS .2. APPLICATION AND RESULTS
    ARONSON, JR
    EMSLIE, AG
    APPLIED OPTICS, 1973, 12 (11): : 2573 - 2584
  • [50] Derivation of an urban materials spectral library through emittance and reflectance spectroscopy
    Kotthaus, Simone
    Smith, Thomas E. L.
    Wooster, Martin J.
    Grimmond, C. S. B.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 94 : 194 - 212