Bayesian Nonparametric Estimation of Continuous Monotone Functions with Applications to Dose-Response Analysis

被引:46
作者
Bornkamp, Bjoern [1 ]
Ickstadt, Katja [1 ]
机构
[1] Tech Univ Dortmund, Fak Stat, D-44221 Dortmund, Germany
关键词
Bayesian nonparametric regression; Dose estimation; Dose-response studies; Monotone regression; Reversible jump MCMC; REGRESSION; BIOASSAY;
D O I
10.1111/j.1541-0420.2008.01060.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we consider monotone nonparametric regression in a Bayesian framework. The monotone function is modeled as a mixture of shifted and scaled parametric probability distribution functions, and a general random probability measure is assumed as the prior for the mixing distribution. We investigate the choice of the underlying parametric distribution function and find that the two-sided power distribution function is well suited both from a computational and mathematical point of view. The model is motivated by traditional nonlinear models for dose-response analysis, and provides possibilities to elicitate informative prior distributions on different aspects of the curve. The method is compared with other recent approaches to monotone nonparametric regression in a simulation study and is illustrated on a data set from dose-response analysis.
引用
收藏
页码:198 / 205
页数:8
相关论文
共 25 条
[1]  
Biesheuvel E, 2002, BIOMETRICAL J, V44, P101, DOI 10.1002/1521-4036(200201)44:1<101::AID-BIMJ101>3.0.CO
[2]  
2-H
[3]  
Bretz F, 2004, METHOD INFORM MED, V43, P457
[4]   Combining multiple comparisons and modeling techniques in dose-response studies [J].
Bretz, F ;
Pinheiro, JC ;
Branson, M .
BIOMETRICS, 2005, 61 (03) :738-748
[5]  
CLYDE M.A., 2007, BAYESIAN STAT, V8, P91
[6]   A simple nonparametric estimator of a strictly monotone regression function [J].
Dette, Holger ;
Neumeyer, Natalie ;
Pilz, Kay F. .
BERNOULLI, 2006, 12 (03) :469-490
[7]  
Diaconis P., 1985, Bayesian statistics, VVol. 2, P133
[8]  
GELFAND AE, 1991, BIOMETRIKA, V78, P657
[9]   Inverse boosting for monotone regression functions [J].
Kim, YW ;
Koo, JY .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 49 (03) :757-770
[10]   A NONPARAMETRIC BAYES METHOD FOR ISOTONIC REGRESSION [J].
LAVINE, M ;
MOCKUS, A .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 46 (02) :235-248