Galerkin time-stepping methods for nonlinear parabolic equations

被引:47
作者
Akrivis, G [1 ]
Makridakis, C
机构
[1] Univ Ioannina, Dept Comp Sci, GR-45110 Ioannina, Greece
[2] Univ Crete, Dept Appl Math, Iraklion 71409, Crete, Greece
[3] FORTH, Inst Appl & Computat Math, Iraklion 71110, Crete, Greece
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2004年 / 38卷 / 02期
关键词
nonlinear parabolic equations; local Lipschitz condition; continuous and discontinuous Galerkin methods; a priori error analysis; monotone operators;
D O I
10.1051/m2an:2004013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider discontinuous as well as continuous Calerkin methods for the time discretization of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity a priori error estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation.
引用
收藏
页码:261 / 289
页数:29
相关论文
共 18 条
[1]  
Akrivis G, 2004, MATH COMPUT, V73, P613, DOI 10.1090/S0025-5718-03-01573-4
[2]   Implicit-explicit multistep methods for quasilinear parabolic equations [J].
Akrivis, G ;
Crouzeix, M ;
Makridakis, C .
NUMERISCHE MATHEMATIK, 1999, 82 (04) :521-541
[3]   Implicit-explicit multistep finite element methods for nonlinear parabolic problems [J].
Akrivis, G ;
Crouzeix, M ;
Makridakis, C .
MATHEMATICS OF COMPUTATION, 1998, 67 (222) :457-477
[4]  
AKRIVIS G, 2002, CONVERGENCE TIME DIS
[5]  
AZIZ AK, 1989, MATH COMPUT, V52, P255, DOI 10.1090/S0025-5718-1989-0983310-2
[6]   EFFICIENT HIGHER-ORDER SINGLE STEP METHODS FOR PARABOLIC PROBLEMS .1. [J].
BRAMBLE, JH ;
SAMMON, PH .
MATHEMATICS OF COMPUTATION, 1980, 35 (151) :655-677
[7]   Adaptive finite element methods for parabolic problems - VI: Analytic semigroups [J].
Eriksson, K ;
Johnson, C ;
Larsson, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (04) :1315-1325
[8]   ADAPTIVE FINITE-ELEMENT METHODS FOR PARABOLIC PROBLEMS .1. A LINEAR-MODEL PROBLEM [J].
ERIKSSON, K ;
JOHNSON, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) :43-77
[9]   ADAPTIVE FINITE-ELEMENT METHODS FOR PARABOLIC PROBLEMS .4. NONLINEAR PROBLEMS [J].
ERIKSSON, K ;
JOHNSON, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (06) :1729-1749
[10]  
ESTEP D., 1993, RAIRO-MATH MODEL NUM, V27, P35