Bilinearisation-reduction approach to the nonlocal discrete nonlinear Schrodinger equations

被引:38
作者
Deng, Xiao [1 ]
Lou, Senyue [2 ]
Zhang, Da-jun [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Ningbo Univ, Fac Sci, Ningbo 315211, Zhejiang, Peoples R China
关键词
Nonlocal discrete nonlinear Schrodinger equation; Bilinear; Reduction; Double Casoratian solutions; DOUBLE WRONSKIAN SOLUTIONS; SOLITON-SOLUTIONS; FORM; TRANSFORMATION; HIERARCHY; AKNS;
D O I
10.1016/j.amc.2018.03.061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A bilinearisation-reduction approach is described for finding solutions for nonlocal integrable systems and is illustrated with nonlocal discrete nonlinear Schrodinger equations. In this approach we first bilinearise the coupled system before reduction and derive its double Casoratian solutions; then we impose reduction on double Casoratians so that they coincide with the nonlocal reduction on potentials. Double Caosratian solutions of the classical and nonlocal (reverse space, reverse time and reverse space-time) discrete nonlinear Schrodinger equations are presented. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:477 / 483
页数:7
相关论文
共 19 条
[1]  
Ablowitz M.J., 2004, LONDON MATH SOC LECT
[2]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[3]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[4]   Integrable discrete PT symmetric model [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW E, 2014, 90 (03)
[5]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[6]   Solutions of the nonlocal nonlinear Schrodinger hierarchy via reduction [J].
Chen, Kui ;
Zhang, Da-jun .
APPLIED MATHEMATICS LETTERS, 2018, 75 :82-88
[7]   SOLITON-SOLUTIONS OF THE KORTEWEG-DEVRIES AND KADOMTSEV-PETVIASHVILI EQUATIONS - THE WRONSKIAN TECHNIQUE [J].
FREEMAN, NC ;
NIMMO, JJC .
PHYSICS LETTERS A, 1983, 95 (01) :1-3
[8]   NEW FORM OF BACKLUND TRANSFORMATIONS AND ITS RELATION TO INVERSE SCATTERING PROBLEM [J].
HIROTA, R .
PROGRESS OF THEORETICAL PHYSICS, 1974, 52 (05) :1498-1512
[9]   DOUBLE WRONSKIAN SOLUTIONS OF THE AKNS AND THE CLASSICAL BOUSSINESQ HIERARCHIES [J].
LIU, QM .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (10) :3520-3527
[10]   N-soliton solution for an integrable nonlocal discrete focusing nonlinear Schrodiriger equation [J].
Ma, Li-Yuan ;
Zhu, Zuo-Nong .
APPLIED MATHEMATICS LETTERS, 2016, 59 :115-121