Quantum-Compute Algorithm for Exact Laser-Driven Electron Dynamics in Molecules

被引:3
作者
Langkabel, Fabian [1 ,2 ]
Bande, Annika [1 ,2 ]
机构
[1] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-14109 Berlin, Germany
[2] Free Univ Berlin, Inst Chem & Biochem, D-14195 Berlin, Germany
关键词
SIMULATION; SIZE;
D O I
10.1021/acs.jctc.2c00878
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we investigate the capability of known quantum computing algorithms for fault-tolerant quantum computing to simulate the laser-driven electron dynamics of excitation and ionization processes in small molecules such as lithium hydride, which can be benchmarked against the most accurate time-dependent full configuration interaction (TD-FCI) calculations. The conventional TD-FCI wave packet propagation is reproduced using the Jordan & minus;Wigner transformation for wave function and operators and the Trotter product formula for expressing the propagator. In addition, the time-dependent dipole moment, as an example of a time-dependent expectation value, is calculated using the Hadamard test. To include non-Hermitian operators in the ionization dynamics, a similar approach to the quantum imaginary time evolution (QITE) algorithm is employed to translate the propagator, including a complex absorption potential, into quantum gates. The computations are executed on a quantum computer simulator. By construction, all quantum computer algorithms, except for the QITE algorithm used only for ionization but not for excitation dynamics, would scale polynomially on a quantum computer with fully entangled qubits. In contrast, TD-FCI scales exponentially. Hence, quantum computation holds promises for substantial progress in the understanding of electron dynamics of excitation processes in increasingly large molecular systems, as has already been witnessed in electronic structure theory.
引用
收藏
页码:7082 / 7092
页数:11
相关论文
共 78 条
[11]   Hamiltonian simulation with nearly optimal dependence on all parameters [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Kothari, Robin .
2015 IEEE 56TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2015, :792-809
[12]   Simulating Hamiltonian Dynamics with a Truncated Taylor Series [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Cleve, Richard ;
Kothari, Robin ;
Somma, Rolando D. .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)
[13]   Fermionic quantum computation [J].
Bravyi, SB ;
Kitaev, AY .
ANNALS OF PHYSICS, 2002, 298 (01) :210-226
[14]  
Buchner F., 2022, CHEMRXIV, DOI [10.26434/chemrxiv-2021-f754f-v2, DOI 10.26434/CHEMRXIV-2021-F754F-V2]
[15]   Quantum Chemistry in the Age of Quantum Computing [J].
Cao, Yudong ;
Romero, Jonathan ;
Olson, Jonathan P. ;
Degroote, Matthias ;
Johnson, Peter D. ;
Kieferova, Maria ;
Kivlichan, Ian D. ;
Menke, Tim ;
Peropadre, Borja ;
Sawaya, Nicolas P. D. ;
Sim, Sukin ;
Veis, Libor ;
Aspuru-Guzik, Alan .
CHEMICAL REVIEWS, 2019, 119 (19) :10856-10915
[16]  
Childs A. M., 2012, ARXIV
[17]   Ab initio lifetime correction to scattering states for time-dependent electronic-structure calculations with incomplete basis sets [J].
Coccia, Emanuele ;
Assaraf, Roland ;
Luppi, Eleonora ;
Toulouse, Julien .
JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (01)
[18]  
DiVincenzo DP, 2000, FORTSCHR PHYS, V48, P771, DOI 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO
[19]  
2-E
[20]   Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit:: A two-qubit benchmark [J].
Dobsicek, Miroslav ;
Johansson, Goran ;
Shumeiko, Vitaly ;
Wendin, Goran .
PHYSICAL REVIEW A, 2007, 76 (03)