Global Lagged Finite-Time Synchronization of Two Chaotic Lur'e Systems Subject to Time Delay

被引:5
作者
Chen, Yun [1 ]
Wu, Xiaofeng [2 ]
Lin, Qian [3 ]
机构
[1] Naval Univ Engn, Dept Informat Secur, Wuhan 430033, Peoples R China
[2] Minnan Normal Univ, Dept Math, Zhangzhou 363000, Peoples R China
[3] Naval Univ Engn, Coll Elect Engn, Wuhan 430033, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 12期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Chaos; finite-time synchronization; Lur'e system; Chua's oscillator; variable-substitution and feedback controller; MASTER-SLAVE SYNCHRONIZATION; SAMPLED-DATA; CRITERION;
D O I
10.1142/S0218127415501618
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the global lagged finite-time synchronization of the master-slave Lur'e systems subject to time delay of signal transmission. By designing a variable-substitution and feedback controller, a master-slave finite-time synchronization scheme for the Lur'e systems with time delay is built up. Two delay-independent global lagged finite-time synchronization criteria are proved in the forms of linear matrix inequalities (LMIs), and the corresponding settling time of synchronization is analytically estimated. The obtained LMI criteria are applied to Chua's oscillators, obtaining some easily implemented algebraic criteria under various single-variable-substitution and feedback controller, which are then optimized to improve their conservative property. Finally, several numerical examples are illustrated to verify the effectiveness of the optimized criteria.
引用
收藏
页数:16
相关论文
共 35 条
[1]   Synchronization of nonlinear chaotic electromechanical gyrostat systems with uncertainties [J].
Aghababa, Mohammad Pourmahmood ;
Aghababa, Hasan Pourmahmood .
NONLINEAR DYNAMICS, 2012, 67 (04) :2689-2701
[2]   A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs [J].
Aghababa, Mohammad Pourmahmood .
CHINESE PHYSICS B, 2011, 20 (09)
[3]   Chaos synchronization of Lu dynamical system [J].
Agiza, HN .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 58 (1-2) :11-20
[4]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[5]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[6]   Synchronization criteria of Lur'e systems with time-delay feedback control [J].
Cao, JD ;
Li, HX ;
Ho, DWC .
CHAOS SOLITONS & FRACTALS, 2005, 23 (04) :1285-1298
[7]   GLOBAL CHAOS SYNCHRONIZATION OF NONAUTONOMOUS GYROSTAT SYSTEMS VIA VARIABLE SUBSTITUTION CONTROL [J].
Chen, Yun ;
Wu, Xiaofeng .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (12) :3719-3730
[8]  
CHUA LO, 1993, IEICE T FUND ELECTR, VE76A, P704
[9]   THE DOUBLE SCROLL FAMILY .1. RIGOROUS PROOF OF CHAOS [J].
CHUA, LO ;
KOMURO, M ;
MATSUMOTO, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (11) :1072-1097
[10]   The complete, lag and anticipated synchronization of a BLDCM chaotic system [J].
Ge, Zheng-Ming ;
Lin, Guo-Hua .
CHAOS SOLITONS & FRACTALS, 2007, 34 (03) :740-764