THE MINIMAL VOLUME ORIENTABLE HYPERBOLIC 3-MANIFOLD WITH 4 CUSPS

被引:9
作者
Yoshida, Ken'ichi [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
关键词
hyperbolic; 3-manifold; essential surface; geodesic boundary; MANIFOLDS; SURFACES;
D O I
10.2140/pjm.2013.266.457
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the 8(2)(4) link complement is the minimal volume orientable hyperbolic manifold with 4 cusps. Its volume is twice the volume V-8 of the ideal regular octahedron; that is, 7.32 ... = 2V(8). The proof relies on Agol's argument used to determine the minimal volume hyperbolic 3-manifolds with 2 cusps. We also need to estimate the volume of a hyperbolic 3-manifold with totally geodesic boundary which contains an essential surface with non-separating boundary.
引用
收藏
页码:457 / 476
页数:20
相关论文
共 50 条
[41]   Waist size for cusps in hyperbolic 3-manifolds II [J].
Adams, Colin .
GEOMETRIAE DEDICATA, 2019, 203 (01) :53-66
[42]   Similar fillings and isolation of cusps of hyperbolic 3-manifolds [J].
Frigerio, Roberto .
PACIFIC JOURNAL OF MATHEMATICS, 2007, 229 (02) :339-364
[43]   Kahler groups, quasi-projective groups and 3-manifold groups [J].
Friedl, Stefan ;
Suciu, Alexander I. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2014, 89 :151-168
[44]   Classification of generalized torsion elements of order two in 3-manifold groups [J].
Himeno, Keisuke ;
Motegi, Kimihiko ;
Teragaito, Masakazu .
TOPOLOGY AND ITS APPLICATIONS, 2025, 371
[45]   Navigation Functions on 3-Manifold With Boundary as a Disjoint Union of Hopf Tori [J].
Liu, Yueyang ;
Hu, Qinglei ;
Feng, Gang .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (01) :219-234
[46]   On normal forms of complex points of small C2-perturbations of real 4-manifolds embedded in a complex 3-manifold [J].
Starcic, T. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (03) :376-436
[47]   A Study of Conformal η-Einstein Solitons on Trans-Sasakian 3-Manifold [J].
Li, Yanlin ;
Mondal, Somnath ;
Dey, Santu ;
Bhattacharyya, Arindam ;
Ali, Akram .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (02) :428-454
[48]   Depth of pleated surfaces in toroidal cusps of hyperbolic 3-manifolds [J].
Wu, Ying-Qing .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2009, 9 (04) :2175-2189
[49]   Harmonic spinors on the Davis hyperbolic 4-manifold [J].
Ratcliffe, John G. ;
Ruberman, Daniel ;
Tschantz, Steven T. .
JOURNAL OF TOPOLOGY AND ANALYSIS, 2021, 13 (03) :699-737
[50]   Quasi-isometric classification of non-geometric 3-manifold groups [J].
Behrstock, Jason A. ;
Neumann, Walter D. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 669 :101-120