EIGENVALUES AND ENTROPIES UNDER THE HARMONIC-RICCI FLOW

被引:22
作者
Li, Yi [1 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
关键词
Eigenvalue; entropies; harmonic-Ricci flow; harmonic-Ricci breathers;
D O I
10.2140/pjm.2014.267.141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the author discusses the eigenvalues and entropies under the harmonic-Ricci flow, which is the Ricci flow coupled with the harmonic map flow. We give an alternative proof of results for compact steady and expanding harmonic-Ricci breathers. In the second part, we derive some monotonicity formulas for eigenvalues of the Laplacian under the harmonic-Ricci flow. Finally, we obtain the first variation of the shrinker and expanding entropies of the harmonic-Ricci flow.
引用
收藏
页码:141 / 184
页数:44
相关论文
共 13 条
[11]   Regularity and expanding entropy for connection Ricci flow [J].
Streets, Jeffrey .
JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (07) :900-912
[12]   Ricci Yang-Mills flow on surfaces [J].
Streets, Jeffrey .
ADVANCES IN MATHEMATICS, 2010, 223 (02) :454-475
[13]   Singularities of renormalization group flows [J].
Streets, Jeffrey .
JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (01) :8-16