EIGENVALUES AND ENTROPIES UNDER THE HARMONIC-RICCI FLOW

被引:22
作者
Li, Yi [1 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
关键词
Eigenvalue; entropies; harmonic-Ricci flow; harmonic-Ricci breathers;
D O I
10.2140/pjm.2014.267.141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the author discusses the eigenvalues and entropies under the harmonic-Ricci flow, which is the Ricci flow coupled with the harmonic map flow. We give an alternative proof of results for compact steady and expanding harmonic-Ricci breathers. In the second part, we derive some monotonicity formulas for eigenvalues of the Laplacian under the harmonic-Ricci flow. Finally, we obtain the first variation of the shrinker and expanding entropies of the harmonic-Ricci flow.
引用
收藏
页码:141 / 184
页数:44
相关论文
共 13 条
[1]  
[Anonymous], 2008, THESIS U TEXAS AUSTI
[2]   First eigenvalues of geometric operators under the Ricci flow [J].
Cao, Xiaodong .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (11) :4075-4078
[3]  
Cao XD, 2007, MATH ANN, V337, P435, DOI 10.1007/s00208-006-0043-5
[4]  
He C.-L., 2008, Nankai Tracts Math., V12, P151
[5]   Eigenvalues and energy functionals with monotonicity formulae under Ricci flow [J].
Li, Jun-Fang .
MATHEMATISCHE ANNALEN, 2007, 338 (04) :927-946
[6]   GENERALIZED RICCI FLOW I: HIGHER-DERIVATIVE ESTIMATES FOR COMPACT MANIFOLDS [J].
Li, Yi .
ANALYSIS & PDE, 2012, 5 (04) :747-775
[7]  
List B., 2006, THESIS FREIE U BERLI
[8]  
Müller R, 2012, ANN SCI ECOLE NORM S, V45, P101
[9]   A gradient flow for worldsheet nonlinear sigma models [J].
Oliynyk, T ;
Suneeta, V ;
Woolgar, E .
NUCLEAR PHYSICS B, 2006, 739 (03) :441-458
[10]  
Streets J. D., 2007, THESIS DUKE U