Techno-economic analysis of hydrogen energy for renewable energy power smoothing

被引:53
|
作者
Kong, Lingguo [1 ]
Li, Linagyuan [1 ]
Cai, Guowei [1 ]
Liu, Chuang [1 ]
Ma, Ping [2 ]
Bian, Yudong [1 ]
Ma, Tao [2 ]
机构
[1] Northeast Elect Power Univ, Minist Educ, Key Lab Modern Power Syst Simulat & Control & Ren, Jilin 132012, Jilin, Peoples R China
[2] Harbin Inst Technol, Sch Management, Harbin, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Wind/photovoltaic grid-connected system; Electrolyzer; Fuel cell; Power smoothing; Techno-economic analysis; WIND ENERGY; STORAGE; SYSTEM; OPTIMIZATION;
D O I
10.1016/j.ijhydene.2020.07.231
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the increasing proportion of renewable energy (mainly wind power and photovoltaic) connected to the grid, the fluctuation of renewable energy power brings great challenges to the safe and reliable operation of power grid. As a clean, low-carbon secondary energy, hydrogen energy is applied in renewable energy (mainly wind power and photovoltaic) grid-connected power smoothing, which opens up a new way of coupling hydrogen storage energy with renewable energy. This paper focuses on the optimization of capacity of electrolyzers and fuel cells and the analysis of system economy in the process of power output smoothing of wind/photovoltaic coupled hydrogen energy grid-connected system. Based on the complementary characteristics of particle swarm optimization (PSO) and chemical reaction optimization algorithm (CROA), a particle swarm optimization-chemical reaction optimization algorithm (PSO-CROA) are proposed. Aiming at maximizing system profit, the capacity of electrolyzers and fuel cells are constrained by wind power fluctuation, and considering environmental benefits, government subsidies and time value of funds, the objective function and its constraints are established. According to the simulation analysis, by comparing the calculated results with PSO and CROA, it shows that PSO-CROA effectively evaluates the economy of the system, and optimizes the optimal capacity of the electrolyzers and fuel cells. The conclusion of this paper is of great significance for the application of hydrogen energy storage in the evaluation of power smoothness and economy of renewable energy grid connection and the calculation of economic allocation of hydrogen energy storage capacity. (c) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2847 / 2861
页数:15
相关论文
共 50 条
  • [21] Techno-economic analysis of a microgrid hybrid renewable energy system in Jordan
    Asfar J.A.
    Atieh A.
    Al-Mbaideen R.
    Journal Europeen des Systemes Automatises, 2019, 52 (04): : 415 - 423
  • [22] Techno-economic assessment of hybrid renewable energy system with multi energy storage system using HOMER
    Yadav, Subhash
    Kumar, Pradeep
    Kumar, Ashwani
    ENERGY, 2024, 297
  • [23] Comparative techno-economic analysis of large-scale renewable energy storage technologies
    Li, Lincai
    Wang, Bowen
    Jiao, Kui
    Ni, Meng
    Du, Qing
    Liu, Yanli
    Li, Bin
    Ling, Guowei
    Wang, Chengshan
    ENERGY AND AI, 2023, 14
  • [24] A techno-economic analysis for power generation through wind energy: A case study of Pakistan
    Adnan, Muhammad
    Ahmad, Jameel
    Ali, Syed Farooq
    Imran, Muhammad
    ENERGY REPORTS, 2021, 7 : 1424 - 1443
  • [25] Impact of demand response on the optimal, techno-economic performance of a hybrid, renewable energy power plant
    Ihsan, Abbas
    Jeppesen, Matthew
    Brear, Michael J.
    APPLIED ENERGY, 2019, 238 : 972 - 984
  • [26] Techno-economic analysis of combined cooling, heating, and power (CCHP) system integrated with multiple renewable energy sources and energy storage units
    Assareh, Ehsanolah
    Dejdar, Ali
    Ershadi, Ali
    Jafarian, Masoud
    Mansouri, Mohammadhossein
    Roshani, Amir Salek
    Azish, Ehsan
    Saedpanah, Ehsan
    Lee, Moonyong
    ENERGY AND BUILDINGS, 2023, 278
  • [27] Techno-economic analysis of different shades of renewable and non-renewable energy-based hydrogen for fuel cell electric vehicles
    Mohideen, Mohamedazeem M.
    Subramanian, Balachandran
    Sun, Jingyi
    Ge, Jing
    Guo, Han
    Radhamani, Adiyodi Veettil
    Ramakrishna, Seeram
    Liu, Yong
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 174
  • [28] Techno-economic feasibility and performance analysis of an islanded hybrid renewable energy system with hydrogen storage in Morocco
    El Hassani, Sara
    Oueslati, Fakher
    Horma, Othmane
    Santana, Domingo
    Moussaoui, Mohammed Amine
    Mezrhab, Ahmed
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [29] Techno-economic analysis of solar/wind power based hydrogen production
    Hasan, Masad Mezher
    Genc, Gamze
    FUEL, 2022, 324
  • [30] Techno-economic analysis of hybrid renewable energy system with solar district heating for net zero energy community
    Kim, Min-Hwi
    Kim, Deukwon
    Heo, Jaehyeok
    Lee, Dong-Won
    ENERGY, 2019, 187