Minimum independent dominating sets of random cubic graphs

被引:20
作者
Duckworth, W [1 ]
Wormald, NC [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3052, Australia
关键词
D O I
10.1002/rsa.10047
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a heuristic for finding a small independent dominating set D of cubic graphs. We analyze the performance of this heuristic, which is a random greedy algorithm, on random cubic graphs using differential equations, and obtain an upper bound on the expected size of D. A corresponding lower bound is derived by means of a direct expectation argument. We prove that 26 asymptotically almost surely satisfies 0.2641n less than or equal to \D\ less than or equal to 0.27942n. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:147 / 161
页数:15
相关论文
共 13 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[2]  
Bollobas B, 1985, RANDOM GRAPHS
[3]  
DUCKWORTH W, 2001, THESIS U MELBOURNE A
[4]  
DUCKWORTH W, UNPUB LINEAR PROGRAM
[5]   APPROXIMATING THE MINIMUM MAXIMAL INDEPENDENCE NUMBER [J].
HALLDORSSON, MM .
INFORMATION PROCESSING LETTERS, 1993, 46 (04) :169-172
[6]  
Kann V., 1992, On the approximability of np-complete optimization problems
[7]   On independent domination number of regular graphs [J].
Lam, PCB ;
Shiu, WC ;
Sun, L .
DISCRETE MATHEMATICS, 1999, 202 (1-3) :135-144
[8]   THE DOMINATING NUMBER OF A RANDOM CUBIC GRAPH [J].
MOLLOY, M ;
REED, B .
RANDOM STRUCTURES & ALGORITHMS, 1995, 7 (03) :209-221
[9]  
Reed B., 1996, COMB PROBAB COMPUT, V5, P277
[10]   ALMOST ALL CUBIC GRAPHS ARE HAMILTONIAN [J].
ROBINSON, RW ;
WORMALD, NC .
RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (02) :117-125