The orientable genus of some joins of complete graphs with large edgeless graphs

被引:14
作者
Ellingham, M. N. [1 ]
Stephens, D. Christopher [2 ]
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
基金
美国国家科学基金会;
关键词
Orientable genus; Join; Hamilton cycle embedding; NONORIENTABLE GENUS; EMBEDDINGS;
D O I
10.1016/j.disc.2007.12.098
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In an earlier paper the authors showed that with one exception the nonorientable genus of the graph (K-m) over bar, + K-n with m >= n - 1, the join of a complete graph with a large edgeless graph, is the same as the nonorientable genus of the spanning subgraph (K-m) over bar + (K-n) over bar = K-m,K-n. The orientable genus problem for (K-m) over bar + K-n with m >= n - 1 seems to be more difficult, but ill this paper we find the orientable genus of some of these graphs. In particular, we determine the genus of (K-m) over bar + K-n when n is even and m >= n, the genus of (K-m) over bar + K-n when n = 2(p) + 2 for p >= 3 and m >= n - 1, and the genus of (K-m) over bar + K-n when n = 2(p) + 1 for p >= 3 and m >= n + 1. In all of these cases the genus is the same as the genus of K-m,K-n namely inverted right perpendicular(m - 2)(n - 2)/4inverted left perpendicular. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1190 / 1198
页数:9
相关论文
共 18 条
[1]  
[Anonymous], 1974, MAP COLOR THEOREM, DOI DOI 10.1007/978-3-642-65759-7
[3]  
Craft D.L, 1991, THESIS W MICHIGAN U
[4]   On the genus of joins and compositions of graphs [J].
Craft, DL .
DISCRETE MATHEMATICS, 1998, 178 (1-3) :25-50
[5]   The nonorientable genus of joins of complete graphs with large edgeless graphs [J].
Ellingham, M. N. ;
Stephens, D. Christopher .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (05) :827-845
[6]   The nonorientable genus of complete tripartite graphs [J].
Ellingham, M. N. ;
Stephens, Chris ;
Zha, Xiaoya .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (04) :529-559
[7]   Counterexamples to the nonorientable genus conjecture for complete tripartite graphs [J].
Ellingham, MN ;
Stephens, C ;
Zha, XY .
EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (3-4) :387-399
[8]   Hamiltonian embeddings from triangulations [J].
Grannell, Mike J. ;
Griggs, Terry S. ;
Siran, Jozef .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 :447-452
[9]  
Gross J. L., 1987, Topological Graph Theory
[10]  
JUNGERMAN M, 1974, COMBIN THEORY B, V16, P293