Uniqueness of meromorphic functions and differential polynomials

被引:36
作者
Fang, CY [1 ]
Fang, ML [1 ]
机构
[1] Nanjing Normal Univ, Dept Math, Nanjing 210097, Peoples R China
基金
中国国家自然科学基金;
关键词
meromorphic function; sharing value; uniqueness;
D O I
10.1016/S0898-1221(02)00175-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using Nevanlinna value distribution theory, we study the uniqueness of meromorphic functions concerning differential polynomials, and prove the following theorem. Let f (z) and g(z) be two nonconstant meromorphic functions, n(greater than or equal to 13) be a positive integer. If f(n) (f - 1)(2)f' and g(n) (g - 1)(2) g' share 1 CM, then f = g. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:607 / 617
页数:11
相关论文
共 13 条
[1]  
Fang ML, 1998, ACTA MATH SIN, V14, P569
[2]  
FANG ML, 1997, ANALYSIS, V17, P355
[3]   Adaptive Forms: an interaction technique for entering structured data [J].
Frank, MR ;
Szekely, P .
KNOWLEDGE-BASED SYSTEMS, 1998, 11 (01) :37-45
[4]  
Gross F., 1976, ser. Lecture Notes in Math, V599, P51
[5]  
HAYMAN WK, 1964, MEROMORPHIC FUNCTION
[6]   On the unique range set of meromorphic functions [J].
Li, P ;
Yang, CC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (01) :177-185
[7]   DEFICIENCIES OF DIFFERENTIAL POLYNOMIALS .2. [J].
YANG, C .
MATHEMATISCHE ZEITSCHRIFT, 1972, 125 (02) :107-&
[8]  
Yang L., 1993, VALUE DISTRIBUTION T
[9]  
Yi H.X., 1995, Uniqueness Theory of Meromorphic Functions, V32
[10]  
Yi H. X., 1996, Chinese Ann. Math. (Ser. A), V17, P397