Development of compact entangled photon-pair sources for satellites

被引:8
作者
Anwar, Ali [1 ]
Perumangatt, Chithrabhanu [1 ]
Villar, Aitor [2 ]
Lohrmann, Alexander [2 ]
Ling, Alexander [1 ,3 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[2] SpeQtral, Connexis, 1 Fusionopolis Way, Singapore 138632, Singapore
[3] Natl Univ Singapore, Fac Sci, Dept Phys, 2 Sci Dr 3, Singapore 117551, Singapore
关键词
QUANTUM; POLARIZATION;
D O I
10.1063/5.0109702
中图分类号
O59 [应用物理学];
学科分类号
摘要
Satellites are expected to play a significant role in the future of global quantum networks. Small satellites such as those following CubeSat standards may enable space-based quantum networks. CubeSat type satellites require less resources to develop and deploy and can be used to rapidly qualify technologies in orbit. The constraints of small satellites drive the development of compact quantum light sources, which will be useful even if the final satellite volume is large due to transmitter aperture requirements. In this article, we discuss the state-of-the-art in compact entangled photon-pair sources and suggest challenges that must be met by new source designs. (C) 2022 Author(s)
引用
收藏
页数:7
相关论文
共 52 条
[1]  
Aasi J, 2013, NAT PHOTONICS, V7, P613, DOI [10.1038/NPHOTON.2013.177, 10.1038/nphoton.2013.177]
[2]   Entangled photon-pair sources based on three-wave mixing in bulk crystals [J].
Anwar, Ali ;
Perumangatt, Chithrabhanu ;
Steinlechner, Fabian ;
Jennewein, Thomas ;
Ling, Alexander .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (04)
[3]   A space-suitable, high brilliant entangled photon source for satellite based quantum key distribution [J].
Beckert, Erik ;
de Vries, Oliver ;
Ursin, Rupert ;
Steinlechner, Fabian-Oliver ;
Graefe, Markus ;
Basset, Marta Gilaberte .
FREE-SPACE LASER COMMUNICATIONS XXXI, 2019, 10910
[4]   Progress in satellite quantum key distribution [J].
Bedington, Robert ;
Arrazola, Juan Miguel ;
Ling, Alexander .
NPJ QUANTUM INFORMATION, 2017, 3
[5]  
Belenchia A, 2023, Arxiv, DOI arXiv:2108.01435
[6]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[7]   Feasibility of satellite quantum key distribution [J].
Bonato, C. ;
Tomaello, A. ;
Da Deppo, V. ;
Naletto, G. ;
Villoresi, P. .
NEW JOURNAL OF PHYSICS, 2009, 11
[8]   A comprehensive design and performance analysis of low Earth orbit satellite quantum communication [J].
Bourgoin, J-P ;
Meyer-Scott, E. ;
Higgins, B. L. ;
Helou, B. ;
Erven, C. ;
Huebel, H. ;
Kumar, B. ;
Hudson, D. ;
D'Souza, I. ;
Girard, R. ;
Laflamme, R. ;
Jennewein, T. .
NEW JOURNAL OF PHYSICS, 2013, 15
[9]   Enhancing quantum cryptography with quantum dot single-photon sources [J].
Bozzio, Mathieu ;
Vyvlecka, Michal ;
Cosacchi, Michael ;
Nawrath, Cornelius ;
Seidelmann, Tim ;
Loredo, Juan C. ;
Portalupi, Simone L. ;
Axt, Vollrath M. ;
Michler, Peter ;
Walther, Philip .
NPJ QUANTUM INFORMATION, 2022, 8 (01)
[10]   Quantum Internet: from Communication to Distributed Computing! [J].
Caleffi, Marcello ;
Cacciapuoti, Angela Sara ;
Bianchi, Giuseppe .
ACM NANOCOM 2018: 5TH ACM INTERNATIONAL CONFERENCE ON NANOSCALE COMPUTING AND COMMUNICATION, 2018,