Dimensional Deviation Estimation for Parts with Free-Form Surfaces

被引:1
作者
Zhao, Dezhong [1 ]
Wang, Wenhu [1 ]
Zhou, Jinhua [1 ]
Cui, Kang [1 ]
Jin, Qichao [1 ]
机构
[1] Northwestern Polytech Univ, Key Lab Contemporary Design & Integrated Mfg Tech, Minist Educ, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
SAMPLING PLAN; INSPECTION; OPTIMIZATION; PREDICTION; ALLOCATION; DESIGN; SIZE;
D O I
10.1155/2018/4390284
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dimensional deviation is a prerequisite for improving the manufacturing process of parts with free-form surfaces, for example, the reverse adjustment of the die cavity of turbine blade. Influenced by random noise of the manufacturing process, dimensional variation is inevitable for batch parts. Therefore, it may cause unacceptable error to estimate batch parts dimensional deviation by a single sample. Meanwhile, the optimum sample size for estimating dimensional deviation is difficult to determine. To overcome this problem, a practical method for estimating of dimensional deviation of parts with free-form surface is proposed. Firstly, displacements of the discrete points on part surface are employed to represent dimensional error of the part. Estimating dimensional deviation of parts is actually to estimate the simultaneous confidence intervals of the discrete point displacements. Secondly, Bonferroni simultaneous confidence intervals are adopted to estimate the confidence intervals of the part dimensional deviation. Moreover, the accuracy of the estimation will be continuously improved by increasing samples. Consequently, a practical dimensional deviation estimation method is presented. Finally, a compressor blade is adopted to illustrate the proposed method. The percentage of estimation error of the blade dimensional deviation that is less than 0.05mm, which is the estimation error timit, of all the 100 times sampling experiments is 99%, exceeding the given confidence level of 95%, while the percentage of the existing method is below the confidence level, only 87%.
引用
收藏
页数:10
相关论文
共 35 条
  • [1] Quality control chart for the mean using double ranked set sampling
    Abujiya, MR
    Muttlak, HA
    [J]. JOURNAL OF APPLIED STATISTICS, 2004, 31 (10) : 1185 - 1201
  • [2] A particle swarm algorithm for inspection optimization in serial multi-stage processes
    Azadeh, Ali
    Sangari, Mohamad Sadegh
    Amiri, Alireza Shamekhi
    [J]. APPLIED MATHEMATICAL MODELLING, 2012, 36 (04) : 1455 - 1464
  • [3] A virtual prototyping environment for a robust design of an injection moulding process
    Berti, Guido
    Monti, Manuel
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2013, 54 : 159 - 169
  • [4] Assembly root cause analysis:: A way to reduce dimensional variation in assembled products
    Carlson, JS
    Söderberg, R
    [J]. INTERNATIONAL JOURNAL OF FLEXIBLE MANUFACTURING SYSTEMS, 2003, 15 (02): : 113 - 150
  • [5] Cheng F., 2012, ENG COMPUT, V30, P599
  • [6] Du Z. F., MULTIVARIATE STAT AN, P77
  • [7] AK-ILS: An Active learning method based on Kriging for the Inspection of Large Surfaces
    Dumas, Antoine
    Echard, Benjamin
    Gayton, Nicolas
    Rochat, Olivier
    Dantan, Jean-Yves
    Van der Veen, Sjoerd
    [J]. PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2013, 37 (01): : 1 - 9
  • [8] A new acceptance sampling plan using Bayesian approach in the presence of inspection errors
    Fallahnezhad, M. S.
    Babadi, A. Yousefi
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2015, 37 (09) : 1060 - 1073
  • [9] SIMULTANEOUS PREDICTION INTERVALS FOR MULTIPLE FORECASTS BASED ON BONFERRONI AND PRODUCT-TYPE INEQUALITIES
    GLAZ, J
    RAVISHANKER, N
    [J]. STATISTICS & PROBABILITY LETTERS, 1991, 12 (01) : 57 - 63
  • [10] Optimum sample size allocation to minimize cost or maximize power for the two-sample trimmed mean test
    Guo, Jiin-Huarng
    Luh, Wei-Ming
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2009, 62 : 283 - 298