Light propagation in planar optical waveguides made of silicon nanocrystals buried in silica glass

被引:3
作者
Janda, P.
Valenta, J.
Ostatnicky, T.
Pelant, I.
Elliman, R. G.
机构
[1] Charles Univ Prague, Dept Chem Phys & Opt, Fac Math & Phys, CZ-12116 Prague 2, Czech Republic
[2] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic
[3] Australian Natl Univ, Dept Elect Mat Engn, Res Sch Phys Sci & Engn, Canberra, ACT, Australia
基金
澳大利亚研究理事会;
关键词
nanocrystals; waveguide; silicon;
D O I
10.1016/j.tsf.2005.12.257
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silicon nanocrystals fabricated by Si+-ion implantation (400 keV, fluences from 4 to 6 x 10(17) cm(-2)) of fused silica form interesting active planar optical waveguides. The nanocrystals emit orange-red photoluminescence (PL) (under UV-blue excitation) and define a region of high refractive index that guides part of the PL along the layer. Light from external light sources can also be coupled into the waveguides (directly to the polished edge facet or from the surface by applying a quartz prism coupler). In both cases the optical emission from the sample facet exhibits narrow (10-20 nm full-with-at-half-maximum) polarisation-resolved transverse electric and transverse magnetic modes instead of the usual broad nanocrystal spectra. This effect is explained by our theoretical model, which identifies the microcavity-like peaks as leaky modes propagating along the waveguide/substrate boundary (not the usual modes guided inside the nanocrystal plane due to its graded index profile). The unconventional properties of this relatively easy-to-make all-silicon structure may be interesting for future photonic devices and sensors. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:797 / 800
页数:4
相关论文
共 11 条
[1]   Tunable, narrow, and directional luminescence from porous silicon light emitting devices [J].
Chan, S ;
Fauchet, PM .
APPLIED PHYSICS LETTERS, 1999, 75 (02) :274-276
[2]   Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals [J].
Dal Negro, L ;
Cazzanelli, M ;
Daldosso, N ;
Gaburro, Z ;
Pavesi, L ;
Priolo, F ;
Pacifici, D ;
Franzò, G ;
Iacona, F .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 16 (3-4) :297-308
[3]   Silicon nanocrystals and Er3+ ions in an optical microcavity [J].
Iacona, F ;
Franzò, G ;
Moreira, EC ;
Priolo, F .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (12) :8354-8356
[4]   Tunable wavelength-selective waveguiding of photoluminescence in Si-rich silica optical wedges [J].
Khriachtchev, L ;
Räsänen, M ;
Novikov, S ;
Lahtinen, J .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (12) :7592-7601
[5]  
Ossicini S, 2003, SPRINGER TR MOD PHYS, V194, pVII
[6]   Photoluminescence from an active planar optical waveguide made of silicon nanocrystals:: dominance of leaky substrate modes in dissipative structures [J].
Ostatnicky, T ;
Valenta, J ;
Pelant, I ;
Luterová, K ;
Elliman, RG ;
Cheylan, S ;
Hönerlage, B .
OPTICAL MATERIALS, 2005, 27 (05) :781-786
[7]  
PELANT I, IN PRESS APPL PHYS B
[8]  
Unger H.G., 1977, Planar Optical Waveguides and Fibres
[9]   Microcavity-like leaky mode emission from a planar optical waveguide made of luminescent silicon nanocrystals [J].
Valenta, J ;
Ostatnicky, T ;
Pelant, I ;
Elliman, RG ;
Linnros, J ;
Hönerlage, B .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (09) :5222-5225
[10]   Active planar optical waveguide made from luminescent silicon nanocrystals [J].
Valenta, J ;
Pelant, I ;
Luterová, K ;
Tomasiunas, R ;
Cheylan, S ;
Elliman, RG ;
Linnros, J ;
Hönerlage, B .
APPLIED PHYSICS LETTERS, 2003, 82 (06) :955-957