Characterization and synthetic application of a novel β1,3-galactosyltransferase from Escherichia coli O55:H7

被引:52
作者
Liu, Xian-wei [1 ,2 ,3 ,4 ]
Xia, Chengfeng [3 ,4 ,5 ]
Li, Lei [1 ,2 ,3 ,4 ]
Guan, Wan-yi [1 ,2 ,3 ,4 ]
Pettit, Nicholas [3 ,4 ]
Zhang, Hou-cheng [1 ,2 ]
Chen, Min [1 ,2 ]
Wang, Peng George [3 ,4 ]
机构
[1] Shandong Univ, Natl Glycoengn Res Ctr, Jinan 250100, Shandong, Peoples R China
[2] Shandong Univ, State Key Lab Microbial Technol, Jinan 250100, Shandong, Peoples R China
[3] Ohio State Univ, Dept Chem, Columbus, OH 43202 USA
[4] Ohio State Univ, Dept Biochem, Columbus, OH 43202 USA
[5] Chinese Acad Sci, Kunming Inst Bot, State Key Lab Phytochem & Plant Resources W China, Kunming 650204, Peoples R China
关键词
O-Antigen; Galactosyltransferase; Type; 1; chain; Lacto-N-tetraose; MURINE UDP-GALACTOSE; N-BIOSE-I; POLYSACCHARIDE SYNTHESIS; PSEUDOMONAS-AERUGINOSA; TYPE-1; CHAIN; HUMAN-MILK; EXPRESSION; ANTIGENS; CELLS; GAL-BETA-1-3GLCNAC;
D O I
10.1016/j.bmc.2009.06.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A beta 1,3-galactosyltransferase (WbgO) was identified in Escherichia coli O55:H7. Its function was confirmed by radioactive activity assay and structure analysis of the disaccharide synthesized with the recombinant enzyme. WbgO requires a divalent metal ion, either Mn2+ or Mg2+, for its activity and is active between pH 6.0-8.0 with a pH optimum of 7.0. N-acetylglucosamine (GlcNAc) and oligosaccharides with GlcNAc at the non-reducing end were shown to be its preferred substrates and it can be used for the synthesis of type 1 glycan chains from these substrates. Together with a recombinant bacterial GlcNAc-transferase, benzyl beta-lacto-N-tetraoside was synthesized with the purified WbgO to demonstrate the synthetic utility of WbgO. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4910 / 4915
页数:6
相关论文
共 33 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   On the preparative use of recombinant β(1-3)galactosyl-transferase [J].
Baisch, G ;
Öhrlein, R ;
Streiff, M ;
Kolbinger, F .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 1998, 8 (07) :751-754
[3]   Functional characterization of GumK, a membrane-associated β-glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis [J].
Barreras, M ;
Abdian, PL ;
Ielpi, L .
GLYCOBIOLOGY, 2004, 14 (03) :233-241
[4]   High-level expression of the Neisseria meningitidis lgtA gene in Escherichia coli and characterization of the encoded N-acetylglucosaminyltransferase as a useful catalyst in the synthesis of GlcNAcβ1→3Gal and GalNAcβ1-3Gal linkages [J].
Blixt, O ;
van Die, I ;
Norberg, T ;
van den Eijnden, DH .
GLYCOBIOLOGY, 1999, 9 (10) :1061-1071
[5]   Structures and mechanisms of glycosyltransferases [J].
Breton, C ;
Snajdrová, L ;
Jeanneau, C ;
Koca, J ;
Imberty, A .
GLYCOBIOLOGY, 2006, 16 (02) :29R-37R
[6]   The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics [J].
Cantarel, Brandi L. ;
Coutinho, Pedro M. ;
Rancurel, Corinne ;
Bernard, Thomas ;
Lombard, Vincent ;
Henrissat, Bernard .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D233-D238
[7]   Interactions between enteropathogenic Escherichia coli and host epithelial cells [J].
Donnenberg, MS ;
Kaper, JB ;
Finlay, BB .
TRENDS IN MICROBIOLOGY, 1997, 5 (03) :109-114
[8]   Screening for galectin-3 inhibitors from synthetic lacto-N-biose libraries using microscale affinity chromatography coupled to mass spectrometry [J].
Fort, Sebastien ;
Kim, Hyo-Sun ;
Hindsgaul, Ole .
JOURNAL OF ORGANIC CHEMISTRY, 2006, 71 (19) :7146-7154
[9]  
German JB, 2008, NESTLE NUTR WORKS SE, V62, P205, DOI 10.1159/000146322
[10]  
Hakomori S, 2001, ADV EXP MED BIOL, V491, P369