Estimating long-term multivariate progression from short-term data

被引:127
作者
Donohue, Michael C. [1 ]
Jacqmin-Gadda, Helene [2 ]
Le Goff, Melanie [2 ]
Thomas, Ronald G. [3 ]
Raman, Rema [1 ,3 ]
Gamst, Anthony C. [1 ,3 ]
Beckett, Laurel A. [4 ]
Jack, Clifford R., Jr. [5 ]
Weiner, Michael W. [6 ]
Dartigues, Jean-Francois [7 ]
Aisen, Paul S. [3 ]
机构
[1] Univ Calif San Diego, Div Biostat & Bioinformat, Dept Family & Prevent Med, La Jolla, CA 92093 USA
[2] INSERM, U897, Dept Biostat, Bordeaux, France
[3] Univ Calif San Diego, Dept Neurosci, La Jolla, CA 92093 USA
[4] Univ Calif Davis, Dept Publ Hlth Sci, Biostat Unit, Davis, CA 95616 USA
[5] Mayo Clin, Dept Radiol, Rochester, MN USA
[6] Univ Calif San Francisco, Ctr Imaging Neurodegenerat Dis, San Francisco, CA 94143 USA
[7] INSERM, U897, Aging Dept, Bordeaux, France
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Multiple outcomes; Semiparametric regression; Self-modeling regression; Progression curves; Growth curves; SELF-MODELING REGRESSION; ALZHEIMERS-DISEASE; HYPOTHETICAL MODEL; BIOMARKERS;
D O I
10.1016/j.jalz.2013.10.003
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Motivation: Diseases that progress slowly are often studied by observing cohorts at different stages of disease for short periods of time. The Alzheimer's Disease Neuroimaging Initiative (ADNI) follows elders with various degrees of cognitive impairment, from normal to impaired. The study includes a rich panel of novel cognitive tests, biomarkers, and brain images collected every 6 months for as long as 6 years. The relative timing of the observations with respect to disease pathology is unknown. We propose a general semiparametric model and iterative estimation procedure to estimate simultaneously the pathological timing and long-term growth curves. The resulting estimates of longterm progression are fine-tuned using cognitive trajectories derived from the long-term "Personnes Agees Quid" study. Results: We demonstrate with simulations that the method can recover long-term disease trends from short-term observations. The method also estimates temporal ordering of individuals with respect to disease pathology, providing subject-specific prognostic estimates of the time until onset of symptoms. When the method is applied to ADNI data, the estimated growth curves are in general agreement with prevailing theories of the Alzheimer's disease cascade. Other data sets with common outcome measures can be combined using the proposed algorithm. Availability: Software to fit the model and reproduce results with the statistical software R is available as the grace package. ADNI data can be downloaded from the Laboratory of NeuroImaging. (C) 2014 The Alzheimer's Association. All rights reserved.
引用
收藏
页码:S400 / S410
页数:11
相关论文
共 29 条
  • [11] Hastie T., 1986, STAT SCI, V1, P297, DOI DOI 10.1214/SS/1177013604
  • [12] IIC PiB and structural MRI provide complementary information in imaging of Alzheimers disease and amnestic mild cognitive impairment
    Jack, Clifford R., Jr.
    Lowe, Val J.
    Senjem, Matthew L.
    Weigand, Stephen D.
    Kemp, Bradley J.
    Shiung, Maria M.
    Knopman, David S.
    Boeve, Bradley F.
    Klunk, William E.
    Mathis, Chester A.
    Petersen, Ronald C.
    [J]. BRAIN, 2008, 131 : 665 - 680
  • [13] Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers
    Jack, Clifford R., Jr.
    Knopman, David S.
    Jagust, William J.
    Petersen, Ronald C.
    Weiner, Michael W.
    Aisen, Paul S.
    Shaw, Leslie M.
    Vemuri, Prashanthi
    Wiste, Heather J.
    Weigand, Stephen D.
    Lesnick, Timothy G.
    Pankratz, Vernon S.
    Donohue, Michael C.
    Trojanowski, John Q.
    [J]. LANCET NEUROLOGY, 2013, 12 (02) : 207 - 216
  • [14] Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
    Jack, Clifford R., Jr.
    Knopman, David S.
    Jagust, William J.
    Shaw, Leslie M.
    Aisen, Paul S.
    Weiner, Michael W.
    Petersen, Ronald C.
    Trojanowski, John Q.
    [J]. LANCET NEUROLOGY, 2010, 9 (01) : 119 - 128
  • [15] Relationships between biomarkers in aging and dementia
    Jagust, W. J.
    Landau, S. M.
    Shaw, L. M.
    Trojanowski, J. Q.
    Koeppe, R. A.
    Reiman, E. M.
    Foster, N. L.
    Petersen, R. C.
    Weiner, M. W.
    Price, J. C.
    Mathis, C. A.
    [J]. NEUROLOGY, 2009, 73 (15) : 1193 - 1199
  • [16] CONVERGENCE AND CONSISTENCY RESULTS FOR SELF-MODELING NONLINEAR-REGRESSION
    KNEIP, A
    GASSER, T
    [J]. ANNALS OF STATISTICS, 1988, 16 (01) : 82 - 112
  • [17] Self-modeling for two-dimensional response curves
    Ladd, WM
    Lindstrom, MJ
    [J]. BIOMETRICS, 2000, 56 (01) : 89 - 97
  • [18] SELF MODELING NONLINEAR REGRESSION
    LAWTON, WH
    MAGGIO, MS
    SYLVESTR.EA
    [J]. TECHNOMETRICS, 1972, 14 (03) : 513 - &
  • [19] NONLINEAR MIXED EFFECTS MODELS FOR REPEATED MEASURES DATA
    LINDSTROM, MJ
    BATES, DM
    [J]. BIOMETRICS, 1990, 46 (03) : 673 - 687
  • [20] SELF-MODELING WITH RANDOM SHIFT AND SCALE-PARAMETERS AND A FREE-KNOT SPLINE SHAPE FUNCTION
    LINDSTROM, MJ
    [J]. STATISTICS IN MEDICINE, 1995, 14 (18) : 2009 - 2021