Estimating long-term multivariate progression from short-term data

被引:127
作者
Donohue, Michael C. [1 ]
Jacqmin-Gadda, Helene [2 ]
Le Goff, Melanie [2 ]
Thomas, Ronald G. [3 ]
Raman, Rema [1 ,3 ]
Gamst, Anthony C. [1 ,3 ]
Beckett, Laurel A. [4 ]
Jack, Clifford R., Jr. [5 ]
Weiner, Michael W. [6 ]
Dartigues, Jean-Francois [7 ]
Aisen, Paul S. [3 ]
机构
[1] Univ Calif San Diego, Div Biostat & Bioinformat, Dept Family & Prevent Med, La Jolla, CA 92093 USA
[2] INSERM, U897, Dept Biostat, Bordeaux, France
[3] Univ Calif San Diego, Dept Neurosci, La Jolla, CA 92093 USA
[4] Univ Calif Davis, Dept Publ Hlth Sci, Biostat Unit, Davis, CA 95616 USA
[5] Mayo Clin, Dept Radiol, Rochester, MN USA
[6] Univ Calif San Francisco, Ctr Imaging Neurodegenerat Dis, San Francisco, CA 94143 USA
[7] INSERM, U897, Aging Dept, Bordeaux, France
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Multiple outcomes; Semiparametric regression; Self-modeling regression; Progression curves; Growth curves; SELF-MODELING REGRESSION; ALZHEIMERS-DISEASE; HYPOTHETICAL MODEL; BIOMARKERS;
D O I
10.1016/j.jalz.2013.10.003
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Motivation: Diseases that progress slowly are often studied by observing cohorts at different stages of disease for short periods of time. The Alzheimer's Disease Neuroimaging Initiative (ADNI) follows elders with various degrees of cognitive impairment, from normal to impaired. The study includes a rich panel of novel cognitive tests, biomarkers, and brain images collected every 6 months for as long as 6 years. The relative timing of the observations with respect to disease pathology is unknown. We propose a general semiparametric model and iterative estimation procedure to estimate simultaneously the pathological timing and long-term growth curves. The resulting estimates of longterm progression are fine-tuned using cognitive trajectories derived from the long-term "Personnes Agees Quid" study. Results: We demonstrate with simulations that the method can recover long-term disease trends from short-term observations. The method also estimates temporal ordering of individuals with respect to disease pathology, providing subject-specific prognostic estimates of the time until onset of symptoms. When the method is applied to ADNI data, the estimated growth curves are in general agreement with prevailing theories of the Alzheimer's disease cascade. Other data sets with common outcome measures can be combined using the proposed algorithm. Availability: Software to fit the model and reproduce results with the statistical software R is available as the grace package. ADNI data can be downloaded from the Laboratory of NeuroImaging. (C) 2014 The Alzheimer's Association. All rights reserved.
引用
收藏
页码:S400 / S410
页数:11
相关论文
共 29 条
  • [1] Self-modelling regression for longitudinal data with time-invariant covariates
    Altman, NS
    Villarreal, JC
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2004, 32 (03): : 251 - 268
  • [2] Prodromal Alzheimer's Disease: Successive Emergence of the Clinical Symptoms
    Amieva, Helene
    Le Goff, Melanie
    Millet, Xavier
    Orgogozo, Jean Marc
    Peres, Karine
    Barberger-Gateau, Pascale
    Jacqmin-Gadda, Helene
    Dartigues, Jean Francois
    [J]. ANNALS OF NEUROLOGY, 2008, 64 (05) : 492 - 498
  • [3] Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease
    Bateman, Randall J.
    Xiong, Chengjie
    Benzinger, Tammie L. S.
    Fagan, Anne M.
    Goate, Alison
    Fox, Nick C.
    Marcus, Daniel S.
    Cairns, Nigel J.
    Xie, Xianyun
    Blazey, Tyler M.
    Holtzman, David M.
    Santacruz, Anna
    Buckles, Virginia
    Oliver, Angela
    Moulder, Krista
    Aisen, Paul S.
    Ghetti, Bernardino
    Klunk, William E.
    McDade, Eric
    Martins, Ralph N.
    Masters, Colin L.
    Mayeux, Richard
    Ringman, John M.
    Rossor, Martin N.
    Schofield, Peter R.
    Sperling, Reisa A.
    Salloway, Stephen
    Morris, John C.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2012, 367 (09) : 795 - 804
  • [4] Bates D., 2012, R package lme4
  • [5] Infant growth modelling using a shape invariant model with random effects
    Beath, Ken J.
    [J]. STATISTICS IN MEDICINE, 2007, 26 (12) : 2547 - 2564
  • [6] Self modeling with flexible, random time transformations
    Brumback, LC
    Lindstrom, MJ
    [J]. BIOMETRICS, 2004, 60 (02) : 461 - 470
  • [7] Coull BA, 2004, STAT SINICA, V14, P695
  • [8] THE-PAQUID-EPIDEMIOLOGIC-PROGRAM-ON-BRAIN-AGING
    DARTIGUES, JF
    GAGNON, M
    BARBERGERGATEAU, P
    LETENNEUR, L
    COMMENGES, D
    SAUVEL, C
    MICHEL, P
    SALAMON, R
    [J]. NEUROEPIDEMIOLOGY, 1992, 11 : 14 - 18
  • [9] Donohue MC., 2013, GROWTH MODELS ALTERN
  • [10] Biomarkers for Alzheimer's: the sequel of an original model
    Frisoni, Giovanni B.
    Blennow, Kaj
    [J]. LANCET NEUROLOGY, 2013, 12 (02) : 126 - 128