A fractional-order hyperchaotic system and its synchronization

被引:32
作者
Deng, Hongmin [1 ]
Li, Tao [2 ]
Wang, Qionghua [1 ]
Li, Hongbin [3 ]
机构
[1] Sichuan Univ, Sch Elect & Informat Engn, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Dept Comp Sci, Chengdu 610065, Peoples R China
[3] Stevens Inst Technol, ECE Dept, Hoboken, NJ 07030 USA
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
CHAOS SYNCHRONIZATION; DIFFERENTIAL-EQUATIONS; POL SYSTEM; VAN;
D O I
10.1016/j.chaos.2008.04.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper a novel fractional-order hyperchaotic system is proposed. The chaotic properties of the system in phase portraits are analyzed by using linear transfer function approximation of the fractional-order integrator block. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Simulation results show that our scheme can not only make the two systems synchronized, but also let them remain in chaotic states. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:962 / 969
页数:8
相关论文
共 32 条
[1]   On nonlinear control design for autonomous chaotic systems of integer and fractional orders [J].
Ahmad, WM ;
Harb, AM .
CHAOS SOLITONS & FRACTALS, 2003, 18 (04) :693-701
[2]   Chaos in fractional-order autonomous nonlinear systems [J].
Ahmad, WM ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :339-351
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]   FRACTAL SYSTEM AS REPRESENTED BY SINGULARITY FUNCTION [J].
CHAREF, A ;
SUN, HH ;
TSAO, YY ;
ONARAL, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (09) :1465-1470
[5]  
Chen CL, 2007, INT J NONLIN SCI NUM, V8, P137
[6]   Chaos synchronization of the fractional Lu system [J].
Deng, WH ;
Li, CP .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 353 (1-4) :61-72
[7]  
Feng JW, 2007, INT J NONLINEAR SCI, V8, P147
[8]  
Feng JW, 2006, INT J NONLIN SCI NUM, V7, P369
[9]   Chaos in a fractional order modified Duffing system [J].
Ge, Zheng-Ming ;
Ou, Chan-Yi .
CHAOS SOLITONS & FRACTALS, 2007, 34 (02) :262-291
[10]   Chaos in a generalized van der Pol system and in its fractional order system [J].
Ge, Zheng-Ming ;
Hsu, Mao-Yuan .
CHAOS SOLITONS & FRACTALS, 2007, 33 (05) :1711-1745