Maximum Likelihood Estimation-Based Joint Sparse Representation for the Classification of Hyperspectral Remote Sensing Images

被引:168
作者
Peng, Jiangtao [1 ]
Li, Luoqing [1 ]
Tang, Yuan Yan [2 ]
机构
[1] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Hubei, Peoples R China
[2] Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China
基金
中国国家自然科学基金;
关键词
Classification; hyperspectral image (HSI); inhomogeneous pixels; joint sparse representation ([!text type='JS']JS[!/text]R); maximum likelihood estimation (MLE); FEATURE-EXTRACTION; CORRENTROPY;
D O I
10.1109/TNNLS.2018.2874432
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A joint sparse representation (JSR) method has shown superior performance for the classification of hyperspectral images (HSIs). However, it is prone to be affected by outliers in the HSI spatial neighborhood. In order to improve the robustness of JSR, we propose a maximum likelihood estimation (MLE)-based JSR (MLEJSR) model, which replaces the traditional quadratic loss function with an MLE-like estimator for measuring the joint approximation error. The MLE-like estimator is actually a function of coding residuals. Given some priors on the coding residuals, the MLEJSR model can be easily converted to an iteratively reweighted JSR problem. Choosing a reasonable weight function, the effect of inhomogeneous neighboring pixels or outliers can be dramatically reduced. We provide a theoretical analysis of MLEJSR from the viewpoint of recovery error and evaluate its empirical performance on three public hyperspectral data sets. Both the theoretical and experimental results demonstrate the effectiveness of our proposed MLEJSR method, especially in the case of large noise.
引用
收藏
页码:1790 / 1802
页数:13
相关论文
共 49 条
  • [21] Self-Paced Joint Sparse Representation for the Classification of Hyperspectral Images
    Peng, Jiangtao
    Sun, Weiwei
    Du, Qian
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (02): : 1183 - 1194
  • [22] Robust Joint Sparse Representation Based on Maximum Correntropy Criterion for Hyperspectral Image Classification
    Peng, Jiangtao
    Du, Qian
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (12): : 7152 - 7164
  • [23] Ideal Regularized Composite Kernel for Hyperspectral Image Classification
    Peng, Jiangtao
    Chen, Hong
    Zhou, Yicong
    Li, Luoqing
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (04) : 1563 - 1574
  • [24] Region-Kernel-Based Support Vector Machines for Hyperspectral Image Classification
    Peng, Jiangtao
    Zhou, Yicong
    Chen, C. L. Philip
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (09): : 4810 - 4824
  • [25] Recent advances in techniques for hyperspectral image processing
    Plaza, Antonio
    Benediktsson, Jon Atli
    Boardman, Joseph W.
    Brazile, Jason
    Bruzzone, Lorenzo
    Camps-Valls, Gustavo
    Chanussot, Jocelyn
    Fauvel, Mathieu
    Gamba, Paolo
    Gualtieri, Anthony
    Marconcini, Mattia
    Tilton, James C.
    Trianni, Giovanna
    [J]. REMOTE SENSING OF ENVIRONMENT, 2009, 113 : S110 - S122
  • [26] Spatial-Aware Dictionary Learning for Hyperspectral Image Classification
    Soltani-Farani, Ali
    Rabiee, Hamid R.
    Hosseini, Seyyed Abbas
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (01): : 527 - 541
  • [27] Remotely Sensed Image Classification Using Sparse Representations of Morphological Attribute Profiles
    Song, Benqin
    Li, Jun
    Mura, Mauro Dalla
    Li, Peijun
    Plaza, Antonio
    Bioucas-Dias, Jose M.
    Benediktsson, Jon Atli
    Chanussot, Jocelyn
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (08): : 5122 - 5136
  • [28] Robust parameter estimation in computer vision
    Stewart, CV
    [J]. SIAM REVIEW, 1999, 41 (03) : 513 - 537
  • [29] A Sparse and Low-Rank Near-Isometric Linear Embedding Method for Feature Extraction in Hyperspectral Imagery Classification
    Sun, Weiwei
    Yang, Gang
    Du, Bo
    Zhang, Lefei
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (07): : 4032 - 4046
  • [30] Band Selection Using Improved Sparse Subspace Clustering for Hyperspectral Imagery Classification
    Sun, Weiwei
    Zhang, Liangpei
    Du, Bo
    Li, Weiyue
    Lai, Yenming Mark
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2784 - 2797