TJ cm-3 high energy density plasma formation from intense laser-irradiated foam targets composed of disordered carbon nanowires

被引:8
作者
Jiang, K. [1 ,2 ]
Pukhov, A. [1 ]
Zhou, C. T. [3 ,4 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Inst Theoret Phys 1, D-40225 Dusseldorf, Germany
[2] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
[3] Shenzhen Technol Univ, Ctr Adv Mat Diagnost Technol, Shenzhen 518118, Peoples R China
[4] Shenzhen Technol Univ, Coll Engn Phys, Shenzhen 518118, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
high energy physics; particle-in-cell simulations; laser plasma; INERTIAL-CONFINEMENT FUSION; GENERATION; PULSES;
D O I
10.1088/1361-6587/abc89e
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
High energy density plasma formation from intense laser-irradiated foam targets composed of disordered carbon nanowires is investigated using three-dimensional particle-in-cell simulations. It is shown that due to the unprecedentedly high laser energy absorption rate of the foam target, approximately three times larger as compared with simple solid targets, the plasma energy density reaches an unexplored TJ cm(-3) regime at 10(23) W cm(-2) laser irradiation. In addition, nanowire thermal expansion caused by prepulse heating is considered. We find that after expansion, the target becomes relativistically transparent to the main pulse. The average value of particle energy density decreases slightly and its distribution tends to resemble that of solid targets. Furthermore, energy density scaling with laser intensities is given. It suggests that an even more extreme plasma state is reachable using ultraintense lasers, as the energy loss to photons caused by quantum electrodynamics effects is rather negligible.
引用
收藏
页数:9
相关论文
共 55 条
[1]   Laser heating of solid matter by light-pressure-driven shocks at ultrarelativistic intensities [J].
Akli, K. U. ;
Hansen, S. B. ;
Kemp, A. J. ;
Freeman, R. R. ;
Beg, F. N. ;
Clark, D. C. ;
Chen, S. D. ;
Hey, D. ;
Hatchett, S. P. ;
Highbarger, K. ;
Giraldez, E. ;
Green, J. S. ;
Gregori, G. ;
Lancaster, K. L. ;
Ma, T. ;
MacKinnon, A. J. ;
Norreys, P. ;
Patel, N. ;
Pasley, J. ;
Shearer, C. ;
Stephens, R. B. ;
Stoeckl, C. ;
Storm, M. ;
Theobald, W. ;
Van Woerkom, L. D. ;
Weber, R. ;
Key, M. H. .
PHYSICAL REVIEW LETTERS, 2008, 100 (16)
[2]   Contemporary particle-in-cell approach to laser-plasma modelling [J].
Arber, T. D. ;
Bennett, K. ;
Brady, C. S. ;
Lawrence-Douglas, A. ;
Ramsay, M. G. ;
Sircombe, N. J. ;
Gillies, P. ;
Evans, R. G. ;
Schmitz, H. ;
Bell, A. R. ;
Ridgers, C. P. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (11)
[3]   Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures [J].
Bargsten, Clayton ;
Hollinger, Reed ;
Capeluto, Maria Gabriela ;
Kaymak, Vural ;
Pukhov, Alexander ;
Wang, Shoujun ;
Rockwood, Alex ;
Wang, Yong ;
Keiss, David ;
Tommasini, Riccardo ;
London, Richard ;
Park, Jaebum ;
Busquet, Michel ;
Klapisch, Marcel ;
Shlyaptsev, Vyacheslav N. ;
Rocca, Jorge J. .
SCIENCE ADVANCES, 2017, 3 (01)
[4]   High-brightness, high-spatial-resolution, 6.151 keV x-ray imaging of inertial confinement fusion capsule implosion and complex hydrodynamics experiments on Sandia's Z accelerator (invited) [J].
Bennett, G. R. ;
Sinars, D. B. ;
Wenger, D. F. ;
Cuneo, M. E. ;
Adams, R. G. ;
Barnard, W. J. ;
Beutler, D. E. ;
Burr, R. A. ;
Campbell, D. V. ;
Claus, L. D. ;
Foresi, J. S. ;
Johnson, D. W. ;
Keller, K. L. ;
Lackey, C. ;
Leifeste, G. T. ;
McPherson, L. A. ;
Mulville, T. D. ;
Neely, K. A. ;
Rambo, P. K. ;
Rovang, D. C. ;
Ruggles, L. E. ;
Porter, J. L. ;
Simpson, W. W. ;
Smith, I. C. ;
Speas, C. S. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (10)
[5]  
Betti R, 2016, NAT PHYS, V12, P435, DOI [10.1038/nphys3736, 10.1038/NPHYS3736]
[6]   Measurements of Electron Transport in Foils Irradiated with a Picosecond Time Scale Laser Pulse [J].
Brown, C. R. D. ;
Hoarty, D. J. ;
James, S. F. ;
Swatton, D. ;
Hughes, S. J. ;
Morton, J. W. ;
Guymer, T. M. ;
Hill, M. P. ;
Chapman, D. A. ;
Andrew, J. E. ;
Comley, A. J. ;
Shepherd, R. ;
Dunn, J. ;
Chen, H. ;
Schneider, M. ;
Brown, G. ;
Beiersdorfer, P. ;
Emig, J. .
PHYSICAL REVIEW LETTERS, 2011, 106 (18)
[7]   NOT-SO-RESONANT, RESONANT ABSORPTION [J].
BRUNEL, F .
PHYSICAL REVIEW LETTERS, 1987, 59 (01) :52-55
[8]   Oncological hadrontherapy with laser ion accelerators [J].
Bulanov, SV ;
Esirkepov, TZ ;
Khoroshkov, VS ;
Kunetsov, AV ;
Pegoraro, F .
PHYSICS LETTERS A, 2002, 299 (2-3) :240-247
[9]   Micro-scale fusion in dense relativistic nanowire array plasmas [J].
Curtis, Alden ;
Calvi, Chase ;
Tinsley, James ;
Hollinger, Reed ;
Kaymak, Vural ;
Pukhov, Alexander ;
Wang, Shoujun ;
Rockwood, Alex ;
Wang, Yong ;
Shlyaptsev, Vyacheslav N. ;
Rocca, Jorge J. .
NATURE COMMUNICATIONS, 2018, 9
[10]   Petawatt and exawatt class lasers worldwide [J].
Danson, Colin N. ;
Haefner, Constantin ;
Bromage, Jake ;
Butcher, Thomas ;
Chanteloup, Jean-Christophe F. ;
Chowdhury, Enam A. ;
Galvanauskas, Almantas ;
Gizzi, Leonida A. ;
Hein, Joachim ;
Hillier, David, I ;
Hopps, Nicholas W. ;
Kato, Yoshiaki ;
Khazanov, Em A. ;
Kodama, Ryosuke ;
Korn, Georg ;
Li, Ruxin ;
Li, Yutong ;
Limpert, Jens ;
Ma, Jingui ;
Nam, Chang Hee ;
Neely, David ;
Papadopoulos, Dimitrios ;
Penman, Rory R. ;
Qian, Liejia ;
Rocca, Jorge J. ;
Shaykin, Andrey A. ;
Siders, Craig W. ;
Spindloe, Christopher ;
Szatmari, Sandor ;
Trines, Raoul M. G. M. ;
Zhu, Jianqiang ;
Zhu, Ping ;
Zuegel, Jonathan D. .
HIGH POWER LASER SCIENCE AND ENGINEERING, 2019, 7