Block copolymer self-assembly controlled by the "green" gas stimulus of carbon dioxide

被引:112
|
作者
Yan, Qiang [1 ]
Zhao, Yue [1 ]
机构
[1] Univ Sherbrooke, Dept Chim, Sherbrooke, PQ J1K 2R1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
REVERSIBLE FIXATION-RELEASE; RESPONSIVE POLYMERS; DRUG-DELIVERY; EMULSION POLYMERIZATION; CO2; VESICLES; NANOPARTICLES; AMIDINE; TRANSITION; GUANIDINES;
D O I
10.1039/c4cc03412k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Stimuli-responsive macromolecules have inspired much interest in polymer science. Inputting an external stimulus to these polymers can modulate their chain structures and self-assembled architectures for functional outputs. This appealing feature has made this class of polymer materials promising for many emerging applications. In order to apply these polymer systems in organisms and further make them adaptive to physiological environments, it is important to explore new stimulation modes. In this Feature Article, we review the recent development of using carbon dioxide (CO2) as a stimulus for tuning or controlling block copolymer (BCP) self-assembly. We show that a series of CO2-responsive functionalities can easily be incorporated into BCP structures, and that rationally designed BCPs can have their self-assembled structures undergo drastic changes in size, shape, morphology and function, controlled by the amount of CO2 in aqueous solution. This gas stimulus has some distinct advantages over other conventional stimuli: it is truly "green" for the environment of the target polymer system without any chemical contaminations; the stimulating strength or magnitude can be precisely adjusted with the continuous gas flow; and, being a key metabolite in cells, it provides a convenient physiological signal to allow synthetic polymer systems to mimic certain properties of organelles and act as intelligent macromolecular machines and devices.
引用
收藏
页码:11631 / 11641
页数:11
相关论文
共 50 条
  • [21] Controlled evaporative self-assembly of hierarchically structured bottlebrush block copolymer with nanochannels
    Han, Wei
    Byun, Myunghwan
    Zhao, Lei
    Rzayev, Javid
    Lin, Zhiqun
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (37) : 14248 - 14253
  • [22] Study on the self-assembly and the drug controlled release of amphiphilic star block copolymer
    School of Science, North-Western Polytechnical University, Xi'an 710072, China
    Gongneng Cailiao, 2008, 4 (663-666):
  • [23] Biomimetic hierarchical porous carbon fibers via block copolymer self-assembly
    Salim, Nisa V.
    Jin, Xing
    Mateti, Srikanth
    Subhani, Karamat
    MICROPOROUS AND MESOPOROUS MATERIALS, 2021, 321
  • [24] Polymer self-assembly in carbon dioxide
    Taylor, DK
    Keiper, JS
    DeSimone, JM
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (18) : 4451 - 4459
  • [25] Surfactants and self-assembly in carbon dioxide
    DeSimone, JM
    Keiper, JS
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2001, 5 (04): : 333 - 341
  • [26] Synchrotron Radiation for the Understanding of Block Copolymer Self-assembly
    Fernandez-Regulez, Marta
    Pinto-Gomez, Christian
    Perez-Murano, Francesc
    JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2019, 32 (03) : 423 - 427
  • [27] Block copolymer nanotubes derived from self-assembly
    Liu, Guojun
    Advances in Polymer Science, 2008, 220 (01) : 29 - 64
  • [28] Machine Learning Predictions of Block Copolymer Self-Assembly
    Tu, Kun-Hua
    Huang, Hejin
    Lee, Sangho
    Lee, Wonmoo
    Sun, Zehao
    Alexander-Katz, Alfredo
    Ross, Caroline A.
    ADVANCED MATERIALS, 2020, 32 (52)
  • [29] Block Copolymer Nanotubes Derived from Self-Assembly
    Liu, Guojun
    SELF-ASSEMBLED NANOMATERIALS II: NANOTUBES, 2008, 220 : 29 - 64
  • [30] Multicomponent Nanopatterns by Directed Block Copolymer Self-Assembly
    Shin, Dong Ok
    Mun, Jeong Ho
    Hwang, Geon-Tae
    Yoon, Jong Moon
    Kim, Ju Young
    Yun, Je Moon
    Yang, Yong-Biao
    Oh, Youngtak
    Lee, Jeong Yong
    Shin, Jonghwa
    Lee, Keon Jae
    Park, Soojin
    Kim, Jaeup U.
    Kim, Sang Ouk
    ACS NANO, 2013, 7 (10) : 8899 - 8907