On the number of representations of a positive integer as a sum of two binary quadratic forms

被引:5
作者
Alaca, Saban [1 ]
Pehlivan, Lerna [2 ]
Williams, Kenneth S. [1 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ctr Res Algebra & Number Theory, Ottawa, ON K1S 5B6, Canada
[2] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Sum of two binary quadratic forms; number of representations;
D O I
10.1142/S1793042114500353
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let N denote the set of positive integers and Z the set of all integers. Let N-0 = N boolean OR{0}. Let a(1)x(2) + b(1)xy + c(1)y(2) and a(2)z(2) + b(2)zt + c(2)t(2) be two positive-definite, integral, binary quadratic forms. The number of representations of n is an element of N-0 as a sum of these two binary quadratic forms is N(a(1), b(1), c(1), a(2), b(2), c(2); n) := card{(x, y, z, t) is an element of Z(4) vertical bar n = a(1)x(2) + b(1)xy + c(1)y(2) + a(2)z(2) + b(2)zt + c(2)t(2)}. When (b1, b2) not equal (0, 0) we prove under certain conditions on a(1), b(1), c(1), a(2), b(2) and c(2) that N(a(1), b(1), c(1), a(2), b(2), c(2); n) can be expressed as a finite linear combination of quantities of the type N(a, 0, b, c, 0, d; n) with a, b, c and d positive integers. Thus, when the quantities N(a, 0, b, c, 0, d; n) are known, we can determine N(a(1), b(1), c(1), a(2), b(2), c(2); n). This determination is carried out explicitly for a number of quaternary quadratic forms a(1)x(2) + b(1)xy + c(1)y(2) + a(2)z(2) + b(2)zt + c(2)t(2). For example, in Theorem 1.2 we show for n is an element of N that N(3, 2, 3, 3, 2, 3; n) = {0 if n equivalent to 1 (mod 4), 2 sigma(N) if n equivalent to 3 (mod 4), 0 if n equivalent to 2 (mod 8), 4 sigma(N) if n equivalent to 4,6 (mod 8), 8 sigma(N) if n equivalent to 8 (mod 16), 24 sigma(N) if n equivalent to 0 (mod 16), where N is the largest odd integer dividing n and s(N) = Sigma(d is an element of Nd vertical bar N) d.
引用
收藏
页码:1395 / 1420
页数:26
相关论文
共 15 条
  • [1] Alaca A., 2008, INT MATH FORUM, V3, P539
  • [2] Alaca A., 2007, INT J MODERN MATH, V2, P143
  • [3] Theta function identities and representations by certain quaternary quadratic forms
    Alaca, Ayse
    Alaca, Saban
    Lemire, Mathieu F.
    Williams, Kenneth S.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (02) : 219 - 239
  • [4] Nineteen quaternary quadratic forms
    Alaca, Ayse
    Alaca, Saban
    Lemire, Mathieu F.
    Williams, Kenneth S.
    [J]. ACTA ARITHMETICA, 2007, 130 (03) : 277 - 310
  • [5] THE NUMBER OF REPRESENTATIONS OF A POSITIVE INTEGER BY CERTAIN QUATERNARY QUADRATIC FORMS
    Alaca, Ayse
    Alaca, Saban
    Lemire, Mathieu F.
    Williams, Kenneth S.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2009, 5 (01) : 13 - 40
  • [6] REPRESENTATIONS OF INTEGERS BY THE FORM x2 + xy + y2 + z2 + zt + t2
    Chapman, Robin
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (05) : 709 - 714
  • [7] Huard JG, 2002, NUMBER THEORY FOR THE MILLENNIUM II, P229
  • [8] Liouville J., 1863, J MATH PURE APPL, V8, P115
  • [9] Liouville J., 1863, J MATH6MATIQUES PURE, P141
  • [10] Liouville J., 1940, T TBILISS MAT I, V8, P69