High energy density asymmetric pseudocapacitors fabricated by graphene/carbon nanotube/MnO2 plus carbon nanotubes nanocomposites electrode

被引:46
作者
Hung, Chung Jung [1 ]
Lin, Pang [1 ]
Tseng, Tseung Yuen [2 ,3 ]
机构
[1] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan
[2] Natl Chiao Tung Univ, Dept Elect Engn, Hsinchu 300, Taiwan
[3] Natl Chiao Tung Univ, Inst Elect, Hsinchu 300, Taiwan
关键词
Graphene; Pseudocapacitor; Nanocomposite; Cycling stability; PERFORMANCE ELECTROCHEMICAL CAPACITORS; SOLID-STATE SUPERCAPACITORS; ELECTROPHORETIC FABRICATION; AQUEOUS-ELECTROLYTES; MANGANESE-DIOXIDE; CHARGE-STORAGE; HIGH-POWER; GRAPHENE/MNO2; MNO2; NANOFLAKES;
D O I
10.1016/j.jpowsour.2014.02.094
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Novel graphene/carbon nanotubes (CNTs)/manganese oxide (MnO2) nanocomposites plus CNTs (GMC + C) and graphene/CNTs hybrid (GC) thin-film electrodes are prepared by electrophoretic deposition (EPD). These nanocomposite electrodes exhibit high surface area and interconnected pore networks. The GMC + C nanocomposite electrode shows excellent specific capacitance of 964 F g(-1) at 1 A g (-1), rate capability with the residual capacitance of 529 F g(-1), at 500 mV s(-1), and fast Na+ diffusion with intercalation value of 6.34 x 10(-7) cm(2) s(-1), and deintercalation value of 8.86 x 10(-7) cm(2) s(-1). Such excellent pseudocapacitive performances are attributed to low ion/electron transport resistances and short ion/electron diffusion lengths. Furthermore, novel aqueous electrolyte-based asymmetric pseudocapacitor having 1.8 V cell voltage is successfully fabricated using GMC + C nanocomposite as a cathode and GC nanocomposite as an anode. The optimized asymmetric pseudocapacitor possesses superior performance with a maximum energy density of record high 304 Wh kg(-1) and retaining 56.2% of its initial specific energy density at the power density up to 242 kW kg(-1). In addition, the asymmetric cell configuration also shows excellent cycling stability with 89% specific capacitance maintained after 10,000 cycles. These results suggest that our designed asymmetric pseudocapacitors have a high potential for practical applications. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:145 / 153
页数:9
相关论文
共 42 条
[1]  
[Anonymous], 2013, J POWER SOURC, V239, P64
[2]   Facile synthesis of one dimensional graphene wrapped carbon nanotube composites by chemical vapour deposition [J].
Aravind, Sasidharannair Sasikaladevi Jyothirmayee ;
Eswaraiah, Varrla ;
Ramaprabhu, Sundara .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (39) :15179-15182
[3]   Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (39) :17615-17624
[4]   Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes [J].
Cheng, Yingwen ;
Zhang, Hongbo ;
Lu, Songtao ;
Varanasiad, Chakrapani V. ;
Liu, Jie .
NANOSCALE, 2013, 5 (03) :1067-1073
[5]   Preparation of MnO2/WMNT composite and MnO2/AB composite by redox deposition method and its comparative study as supercapacitive materials [J].
Chu, Hong-Yan ;
Lai, Qiong-Yu ;
Wang, Ling ;
Lu, Jian-Fang ;
Zhao, Yan .
IONICS, 2010, 16 (03) :233-238
[6]   Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density [J].
Fan, Zhuangjun ;
Yan, Jun ;
Wei, Tong ;
Zhi, Linjie ;
Ning, Guoqing ;
Li, Tianyou ;
Wei, Fei .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (12) :2366-2375
[7]   Flexible All-Solid-State Asymmetric Supercapacitors Based on Free-Standing Carbon Nanotube/Graphene and Mn3O4 Nanoparticle/Graphene Paper Electrodes [J].
Gao, Hongcai ;
Xiao, Fei ;
Ching, Chi Bun ;
Duan, Hongwei .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (12) :7020-7026
[8]   High-Performance Asymmetric Supercapacitor Based on Graphene Hydrogel and Nanostructured MnO2 [J].
Gao, Hongcai ;
Xiao, Fei ;
Ching, Chi Bun ;
Duan, Hongwei .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (05) :2801-2810
[9]   High-performance flexible solid-state supercapacitors based on MnO2-decorated nanocarbon electrodes [J].
Gao, Yang ;
Zhou, Yun Shen ;
Qian, Min ;
Li, Hao Ming ;
Redepenning, Jody ;
Fan, Li Sha ;
He, Xiang Nan ;
Xiong, Wei ;
Huang, Xi ;
Majhouri-Samani, Masoud ;
Jiang, Lan ;
Lu, Yong Feng .
RSC ADVANCES, 2013, 3 (43) :20613-20618
[10]   Microstructural Effects on Charge-Storage Properties in MnO2-Based Electrochemical Supercapacitors [J].
Ghodbane, Ouassim ;
Pascal, Jean-Louis ;
Favier, Frederic .
ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (05) :1130-1139