Prediction of outcome in Parkinson's disease patients from DAT SPECT images using a convolutional neural network

被引:0
作者
Adams, Matthew P. [1 ]
Yang, Bao [1 ]
Rahmim, Arman [2 ,3 ]
Tang, Jing [1 ]
机构
[1] Oakland Univ, Dept Elect & Comp Engn, Rochester, MI 48063 USA
[2] Univ British Columbia, Dept Radiol, Vancouver, BC, Canada
[3] Univ British Columbia, Dept Phys, Vancouver, BC, Canada
来源
2018 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE PROCEEDINGS (NSS/MIC) | 2018年
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Dopamine transporter (DAT) SPECT imaging is widely used for the diagnosis of Parkinson's disease (PD). Investigations on quantitative analysis of DAT images have been performed using radiomic features together with non-imaging features to predict a patient's outcome. The purpose of this study is taking the entire DAT image, without feature extraction, predicting a patient's motor function indicated by part III of the unified Parkinson's disease rating scale (UPDRS) using a convolutional neural network (CNN). We cast the motor function score prediction as a categorization problem that decides on whether a given patient will have a score below or above 30 in 4 years from baseline. This prediction practice was first conducted using only the baseline UPDRS_III score as the input, which resulted in an accuracy of 64.5%. The performance was then evaluated using the baseline score with the DAT image to assess whether the latter has added value for prediction. The resulting mean accuracy was significantly improved, reaching to 70.7%. This CNN-based motor function score predicting scheme demonstrates the contribution of DAT SPECT images, which shows their promise in improving progression tracking for patients with PD.
引用
收藏
页数:4
相关论文
共 13 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Multimodal Radiomic Features for the Predicting Gleason Score of Prostate Cancer [J].
Chaddad, Ahmad ;
Kucharczyk, Michael J. ;
Niazi, Tamim .
CANCERS, 2018, 10 (08)
[3]   Refining diagnosis of Parkinson's disease with deep learning-based interpretation of dopamine transporter imaging [J].
Choi, Hongyoon ;
Ha, Seunggyun ;
Im, Hyung Jun ;
Paek, Sun Ha ;
Lee, Dong Soo .
NEUROIMAGE-CLINICAL, 2017, 16 :586-594
[4]   The Unified Parkinson's Disease Rating Scale (UPDRS): Status and recommendations [J].
Goetz, CG ;
Poewe, W ;
Rascol, O ;
Sampaio, C ;
Stebbins, GT ;
Fahn, S ;
Lang, AE ;
Martinez-Martin, P ;
Tilley, B ;
Van Hilten, B ;
Kleczka, C ;
Seidl, L .
MOVEMENT DISORDERS, 2003, 18 (07) :738-750
[5]  
Kingma D. P., P 3 INT C LEARN REPR
[6]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[7]   Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction [J].
Lian, Chunfeng ;
Ruan, Su ;
Denoeux, Thierry ;
Jardin, Fabrice ;
Vera, Pierre .
MEDICAL IMAGE ANALYSIS, 2016, 32 :257-268
[8]   Data Analysis Strategies in Medical Imaging [J].
Parmar, Chintan ;
Barry, Joseph D. ;
Hosny, Ahmed ;
Quackenbush, John ;
Aerts, Hugo J. W. L. .
CLINICAL CANCER RESEARCH, 2018, 24 (15) :3492-3499
[9]   Improved prediction of outcome in Parkinson's disease using radiomics analysis of longitudinal DAT SPECT images [J].
Rahmim, Arman ;
Huang, Peng ;
Shenkov, Nikolay ;
Fotouhi, Sima ;
Davoodi-Bojd, Esmaeil ;
Lu, Lijun ;
Mari, Zoltan ;
Soltanian-Zadeh, Hamid ;
Sossi, Vesna .
NEUROIMAGE-CLINICAL, 2017, 16 :539-544
[10]  
Shen Wei, 2015, Inf Process Med Imaging, V24, P588, DOI 10.1007/978-3-319-19992-4_46